\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \hoffset -0.35truein \vsize 9.2truein \def\u{\vskip -5pt} \def\v{\vskip 10pt} Integration by parts: Derivative of a product: $(uv)' = uv' + vu'$ \centerline{$uv' = (uv)' - vu'$} \centerline{$\int uv' = \int (uv)' - \int vu'$} \centerline{$\int uv' = (uv) - \int vu'$} Example: $\int e^{2x} sin(3x)$ Let $u = sin(3x)$, $dv = e^{2x}$ then $du = 3cos(3x)$, $v = {1 \over 2}e^{2x}$ then $d^2u = -9sin(3x)$, $\int v = {1 \over 4}e^{2x}$ $\int e^{2x} sin(3x) = {1 \over 2}sin(3x)e^{2x} - \int {3 \over 2}e^{2x}cos(3x)$ \hskip 0.4in $= {1 \over 2}sin(3x)e^{2x} - [{3 \over 4}cos(3x)e^{2x} - \int {-9 \over 4}sin(3x)e^{2x}$ $\int e^{2x} sin(3x) = {1 \over 2}sin(3x)e^{2x} - {3 \over 4}cos(3x)e^{2x} - {9 \over 4}\int sin(3x)e^{2x}$ ${13 \over 4} \int e^{2x} sin(3x) = {1 \over 2}sin(3x)e^{2x} - {3 \over 4}cos(3x)e^{2x}$ $\int e^{2x} sin(3x) = {4 \over 13}[{1 \over 2}sin(3x)e^{2x} - {3 \over 4}cos(3x)e^{2x}]$ \vfill Optional Exercise: Calculate $\int e^{x} cos(2x)$ \end