\magnification 1200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip -5pt} Note the following review problems DO NOT cover all problem types which may appear on the final. 6.3 preliminaries: 1a.) Suppose $f(t) = t^2$, then $f(t-2) = \underline{(t-2)^2}$ 1b.) Suppose $f(t) = t^2 + 3t + 4$, then $f(t-2) = \underline{(t-2)^2 + 3(t-2) + 4}$ 1c.) Suppose $f(t) = sin(t) + e^{8t}$, then $f(t-2) = \underline{sin(t-2) + e^{8(t-2)}}$ 2a.) Suppose $f(t-2) = (t-2)^2$, then $f(t) = \underline{ t^2}$ 2b.) Suppose $f(t-2) = (t-2)^2 + 3(t-2) + 4$, then $f(t) = \underline{t^2 + 3t + 4}$ 2c.) Suppose $f(t-2) = sin(t-2) + e^{8(t-2)}$, then $f(t) = \underline{sin(t) + e^{8t}}$ 3a.) Suppose $f(t-2) = t^2 + 2t + 5$, then $f(t) = \underline{t^2 + 6t + 13}$ $t^2 + 2t + 5 = (t-2)^2 + 4t - 4 + 2t + 5 = (t-2)^2 + 6t + 1 = (t-2)^2 + 6(t-2) + 12 + 1 $ \u $=(t-2)^2 + 6(t-2) + 13$ Check: $f(t-2) = (t-2)^2 + 6(t-2) + 13 = t^2 - 4t + 4 + 6t - 12 + 13 = t^2 + 2t + 5$ 3b.) Suppose $f(t-2) = 3t^2 + 8t + 1$, then $f(t) = \underline{3t^2 + 20t + 29}$ $ 3t^2 + 8t + 1 = 3(t-2)^2 - 3(-4t + 4) + 8t + 1 = 3(t-2)^2 + 12t -12 + 8t + 1$ \u $ = 3(t-2)^2 + 20t - 11 = $ \u $3(t-2)^2 + 20(t-2) + 40 - 11 = 3(t-2)^2 + 20(t-2) + 29$ Check: $f(t-2) = 3(t-2)^2 + 20(t-2) + 29 = 3(t^2 - 4t + 4 ) + 20t - 40 + 29 = 3t^2 - 12t + 12 + 20t - 11 = 3t^2 + 8t + 1$ 3c.) Suppose $f(t-2) = cos(t) + e^{8t}$, then $f(t) = \underline{cos(t+2) + e^{8t + 16}} $ $cos(t) + 4^{8t} = cos(t-2 + 2) + e^{8(t-2) + 16}$ Check: $f(t-2) = cos(t-2+2) + e^{8(t-2) + 16} = cos(t) + e^{8t-16 + 16} = cos(t) + e^{8t}$ Chapter 6: 4.) Find the LaPlace transform of the following: (used ${\cal L}(u_c(t)f(t-c)) = e^{-cs}{\cal L}(f(t))$) 4a.) ${\cal L}(u_3(t^2 - 2t + 1)) = \underline{ e^{-3s}({2 \over s^3} + 4{1 \over s^2} + {4 \over s})} $ ${\cal L}(u_3(t^2 - 2t + 1)) = {\cal L}(u_3((t-3)^2 + 6t - 9 - 2t + 1)) = {\cal L}(u_3((t-3)^2 + 4t - 8)) = {\cal L}(u_3 ( (t-3)^2 + 4(t-3) + 12 - 8 ) ) = {\cal L}(u_3 ( (t-3)^2 + 4(t-3) + 4 ) ) = e^{-3s}{\cal L}( t^2 + 4t + 4 ) ) = e^{-3s}({2 \over s^3} + 4{1 \over s^2} + {4 \over s})$ 4b.) ${\cal L}(u_4(e^{-8t})) = \underline{e^{-4s-32}{1 \over s + 8}} $ ${\cal L}(u_4e^{-8t} ) = {\cal L}(u_4e^{-8(t-4) - 32}) = e^{-4s}{\cal L}(e^{-8t - 32} ) = e^{-4s}e^{-32}{\cal L}(e^{-8t} ) = e^{-4s-32}{1 \over s + 8}$ 4c.) $ {\cal L}(u_2(t^2e^{3t})) = \underline{e^{-2s+ 6}({2 \over (s - 3)^3} + {4 \over (s - 3)^2} + {4 \over (s - 3)} ) } $ $ {\cal L}(u_2(t^2e^{3t})) = {\cal L}(u_2([(t-2)^2 + 4t - 4]e^{3(t-2) + 6})) = {\cal L}(u_2([(t-2)^2 + 4(t-2) + 8 - 4]e^{3(t-2) + 6})) = {\cal L}(u_2([(t-2)^2 + 4(t-2) + 4]e^{3(t-2) + 6})) = e^{-2s}{\cal L}([t^2 + 4t + 4]e^{3t + 6})) = e^{-2s}e^6{\cal L}([t^2 + 4t + 4]e^{3t})) = e^{-2s}e^6{\cal L}(t^2e^{3t} + 4te^{3t} + 4e^{3t})) = e^{-2s+ 6}({2 \over (s - 3)^3} + 4{1 \over (s - 3)^2} + {4 \over (s - 3)} )$ 5.) Find the inverse LaPlace transform of the following: (usually used $u_c(t)f(t-c) = {\cal L}^{-1}(e^{-cs}{\cal L}(f(t))) 5a.) $ {\cal L}^{-1}(e^{-8s}{1 \over s - 3}) = \underline{u_8(t)e^{3(t-8)}} $ ${\cal L}^{-1}(e^{-8s}{1 \over s - 3}) = u_8f(t-8)$ where ${\cal L}(f(t)) = {1 \over s - 3})$. Hence $f(t) = {\cal L}^{-1}({1 \over s - 3}) = e^{3t}$ 5b.) ${\cal L}^{-1}(e^{4s}{1 \over s^2 - 3}) = \underline{u_{-4}(t)sinh(\sqrt{3}(t + 4))} $ ${\cal L}^{-1}(e^{4s}{1 \over s^2 - 3}) = u_{-4}(t)f(t+4)$ where ${\cal L}(f(t)) = {1 \over s^2 - 3})$. Hence $f(t) = {1 \over \sqrt{3}}{\cal L}^{-1}({\sqrt(3) \over s^2 - 3}) = sinh(\sqrt{3}t)$ 5c.) ${\cal L}^{-1}(e^{s}{1 \over (s - 3)^2 + 4}) = \underline{{1 \over 2}u_{-1}(t)e^{3(t+1)}sin(2(t+ 1))} $ ${\cal L}^{-1}(e^{s}{1 \over (s - 3)^2 + 4}) = u_{-1}(t)f(t+1)$ where ${\cal L}(f(t)) = {1 \over (s - 3)^2 + 4})$. Hence $f(t) = {1 \over 2}{\cal L}^{-1}({2 \over (s - 3)^2 + 4}) = {1 \over 2}e^{3t}sin(2t)$ 5d.) ${\cal L}^{-1}(e^{-s}{5 \over (s - 3)^4}) = \underline{u_{1}(t){1 \over 6}(t-1)^3e^{3(t-1)}} $ ${\cal L}^{-1}(e^{-s}{5 \over (s - 3)^4}) = u_{1}(t)f(t-1)$ where ${\cal L}(f(t)) = {1 \over (s - 3)^4})$. Hence $f(t) = {1 \over 6}{\cal L}^{-1}({6 \over (s - 3)^4}) = {1 \over 6}t^3e^{3t}$ 5e.) ${\cal L}^{-1}(e^{s} \over 4s) = \underline{{1 \over 4} u_{-1}(t)} $ ${\cal L}^{-1}(e^{s} \over 4s) $ $= {1 \over 4}{\cal L}^{-1}(e^{s} \over s)$ $= {1 \over 4} u_{-1}(t)f(t+1)$ where ${\cal L}(f(t)) = {1 \over s}$. Hence $f(t) = 1$. Thus $f(t+1) = 1$ 5f.) ${\cal L}^{-1}(e^{s}) = \underline{\delta(t + 1)} $ 6.) Use the definition and not the table to find the LaPlace transform of the following: 6a.) ${\cal L}(t^2) = \underline{{ 2 \over s^3}} $ $\int_0^\infty e^{-st}t^2 dt $ $= t^2 {e^{-st} \over -s} |_0^\infty - \int_0^\infty 2t{e^{-st} \over -s}$ $= lim_{t \rightarrow \infty} t^2 {e^{-st} \over -s} - 0^2 {e^{0} \over -s} - [2t{e^{-st} \over s^2}|_0^\infty - \int_0^\infty 2{e^{-st} \over s^2}]$ \v $= 0 - 0 - [lim_{t \rightarrow \infty}2t{e^{-st} \over s^2} - 2(0){e^{0} \over s^2} - 2{e^{-st} \over -s^3}|_0^\infty ]$ $= - [0 - 0 - (lim_{t \rightarrow \infty}2{e^{-st} \over -s^3} - 2{e^{0} \over -s^3}) ]$ $= (0 - {2 \over -s^3}) ]$ $= { 2 \over s^3} $ Let $u = t^2, ~ dv = e^{-st}$ \v ~~~~$du = 2t, ~v = {e^{-st} \over -s}$ \v ~~~~$d^2u = 2, ~ \int v = {e^{-st} \over s^2}$ 6a.) ${\cal L}(cos(t)) = \underline{\hskip 2in} $ 7.) Find the inverse LaPlace transform of the following. Leave your answer in terms of a convolution integral: 7a.) ${\cal L}^{-1}({1 \over (s-2)(s^2 + 4)}) = \underline{\hskip 2in} $ 7b.) ${\cal L}^{-1}({1 \over (s-2)(s^2 - 4s)}) = \underline{\hskip 2in} $ 7c.) ${\cal L}^{-1}({ 2s \over (s-2)(s^2 - 4)s}) = \underline{\hskip 2in} $ 8.) Find $f*g$ 8a.) $4t*5t^4 = \underline{{ 2 \over 3}t^6 } $ $\int_0^t 4(t-s) 5s^4 ds = \int_0^t 20(ts^4- s^5) ds = 4ts^5 - {20 \over 6}s^6 |_0^t = 4t^6 - {10 \over 3}t^6 = {2 \over 3}t^6 8b.) $5t^4*4t = \underline{{2 \over 3}t^6 } $ $5t^4*4t = 4t*5t^4 = {2 \over 3}t^6 $ 8c.) $sin(t)*e^t = \underline{\hskip 2in} $ $ \int_0^t e^{t-s}sin(s)ds = \int_0^t e^{t}e^{-s}sin(s)ds = $ $e^t\int_0^t e^{-s}sin(s)ds = e^t[-e^{-s}sin(s)|_0^t - \int_0^t -e^{-s}cos(s)ds] = e^t[-e^{-t}sin(t) - -e^0 sin(0) - \{e^{-s}cos(s)|_0^t - \int_0^t -e^{-s}sin(s)ds\}] = e^t[-e^{-t}sin(t) - \{(e^{-t}cos(t) - e^0 cos(0)) - \int_0^t -e^{-s}sin(s)ds\}] = e^t[-e^{-t}sin(t) - \{(e^{-t}cos(t) - 1) - \int_0^t -e^{-s}sin(s)ds\}] = -e^t e^{-t}sin(t) - \{(e^t e^{-t}cos(t) - e^t) - e^t \int_0^t -e^{-s}sin(s)ds\}] = -sin(t) - cos(t) + e^t) + e^t \int_0^t -e^{-s}sin(s)ds\}] $ Let $u = sin(s), ~ dv = e^{-s}$ ~~~~$du = cos(s), ~v = -e^{-s}$ ~~~~$d^2u = -sin(s), ~ \int v = e^{-s}$ Make sure you can also solve a quick differential equation using the LaPlace transform and use any of the formulas on p. 304. Chapter 3: 9.) Solve the following initial problems: 9a.) $y'' + 6y' + 8y = 0, ~y(0) = 0, ~y'(0) = 0 $ Suppose $y = e^{rt}$. Then $y' = re^{rt}, ~y'' = r^2e^{rt}$ $r^2e^{rt} + 6re^{rt} + 8e^{rt} = 0$ Hence $r^2 + 6r + 8 = 0$. Thus, (r + 2)(r + 4) = 0$. Hence $r = -2, -4$ Hence general solution is $y = c_1e^{-2t} + c_2e^{-4t}$ $y(0) = 0: 0 = c_1 + c_2$. Thus $c_2 = -c_1$ $y'(0) = 0: y' = -2c_1e^{-2t} - 4c_2e^{-4t}$ $0 = -2c_1 - 4c_2 = 2c_2 - 4c_2 = -2c_2$ Thus $c_2 = 0, c_1 = 0$ Thus, $y = 0$ 9b.) $y'' + 6y' + 9y = 0, ~y(0) = 0, ~y'(0) = 0 $ 9c.) $y'' + 6y' + 10y = 0, ~y(0) = 0, ~y'(0) = 0$ 9a.) $y'' + 6y' + 8y = cos(t), ~y(0) = 0, ~y'(0) = 0 $ 9b.) $y'' + 6y' + 9y = cos(t), ~y(0) = 0, ~y'(0) = 0 $ 9c.) $y'' + 6y' + 10y = cos(t), ~y(0) = 0, ~y'(0) = 0$ 3.8: 1-5, 7, 11, 14, 3.9: 1 - 8 Make sure you understand sections 3.8, 3.9 10.) Solve the following initial problems: 10a.) $y' + 3y + 1 = 0, ~y(0) = 0$ 10b.) $ , ~y(0) = 0$ *10c.) $cos(t)y'- sin(t)y = {1 \over t^2}, ~y(0) = 0$ 10d.) $y' = {3x^2 - 2 \over xy - xy^2}, ~y(0) = 0$ Chapter 1: 11.) For each of the following, draw the direction field for the given differential equation. Based on the direction field, determine the behavior of $y$ as $t \rightarrow \infty$. If this behavior depends on the initial value of $y$ at $t=o$, describe this dependency. 11a.) $y' = y$ 11a.) $y' = 1$ 11a.) $y' = y(y + 4)$ Chapter 7: 12.) Transform the given equation into a system of first order equations: 12a.) $x''' - 2x'' + 3x' - 4x = t^2$ 12b.) $x'''' - 2x'' + 3x' - 4x = t^2$ Make sure you also study exam 1 and 2 as well as everything else. Remember the above list is INCOMPLETE. * means optional type problem. If a problem like 9c appeared on the final, it would be in the "choose" section. \end