\magnification 1200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.5truein \def\u{\vskip -10pt} \def\v{\vskip -6pt} Note the following review problems DO NOT cover all problem types which may appear on the final. 6.3 preliminaries: 1a.) Suppose $f(t) = t^2$, then $f(t-2) = \underline{\hskip 2in}$ 1b.) Suppose $f(t) = t^2 + 3t + 4$, then $f(t-2) = \underline{\hskip 2in}$ 1c.) Suppose $f(t) = sin(t) + e^{8t}$, then $f(t-2) = \underline{\hskip 2in}$ 2a.) Suppose $f(t-2) = (t-2)^2$, then $f(t) = \underline{\hskip 2in}$ 2b.) Suppose $f(t-2) = (t-2)^2 + 3(t-2) + 4$, then $f(t) = \underline{\hskip 2in}$ 2c.) Suppose $f(t-2) = sin(t-2) + e^{8(t-2)}$, then $f(t) = \underline{\hskip 2in}$ 3a.) Suppose $f(t-2) = t^2 + 2t + 5$, then $f(t) = \underline{\hskip 2in}$ 3b.) Suppose $f(t-2) = 3t^2 + 8t + 1$, then $f(t) = \underline{\hskip 2in}$ 3c.) Suppose $f(t) = cos(t) + 4^{8t}$, then $f(t) = \underline{\hskip 2in} $ Chapter 6: 4.) Find the LaPlace transform of the following: 4a.) ${\cal L}(u_3(t^2 - 2t + 1)) = \underline{\hskip 2in} $ 4b.) ${\cal L}(u_4(e^{-8t})) = \underline{\hskip 2in} $ 4c.) $ {\cal L}(u_2(t^2e^{3t})) = \underline{\hskip 2in} $ 5.) Find the inverse LaPlace transform of the following: 5a.) $ {\cal L}^{-1}(e^{-8s}{1 \over s - 3}) = \underline{\hskip 2in} $ 5b.) ${\cal L}^{-1}(e^{4s}{1 \over s^2 - 3}) = \underline{\hskip 2in} $ 5c.) ${\cal L}^{-1}(e^{s}{1 \over (s - 3)^2 + 4}) = \underline{\hskip 2in} $ 5d.) ${\cal L}^{-1}(e^{-s}{5 \over (s - 3)^4}) = \underline{\hskip 2in} $ 5e.) ${\cal L}^{-1}(e^{s}) = \underline{\hskip 2in} $ 6.) Use the definition and not the table to find the LaPlace transform of the following: 6a.) ${\cal L}(t^3) = \underline{\hskip 2in} $ 6a.) ${\cal L}(cos(t)) = \underline{\hskip 2in} $ 7.) Find the inverse LaPlace transform of the following. Leave your answer in terms of a convolution integral: 7a.) ${\cal L}^{-1}({1 \over (s-2)(s^2 + 4)}) = \underline{\hskip 2in} $ 7b.) ${\cal L}^{-1}({1 \over (s-2)(s^2 - 4s)}) = \underline{\hskip 2in} $ 7c.) ${\cal L}^{-1}({ 2s \over (s-2)(s^2 - 4)s}) = \underline{\hskip 2in} $ 8.) Find $f*g$ 8a.) $4t*5t^4 = \underline{\hskip 2in} $ 8b.) $5t^4*4t = \underline{\hskip 2in} $ 8c.) $sin(t)*e^t = \underline{\hskip 2in} $ Make sure you can also solve a quick differential equation using the LaPlace transform and use any of the formulas on p. 304. Chapter 3: 9.) Solve the following initial problems: 9a.) $y'' + 6y' + 8y = 0, ~y(0) = 0, ~y'(0) = 0 $ 9b.) $y'' + 6y' + 9y = 0, ~y(0) = 0, ~y'(0) = 0 $ 9c.) $y'' + 6y' + 10y = 0, ~y(0) = 0, ~y'(0) = 0$ 9d.) $y'' + 6y' + 8y = cos(t), ~y(0) = 0, ~y'(0) = 0 $ 9e.) $y'' + 6y' + 9y = cos(t), ~y(0) = 0, ~y'(0) = 0 $ 9f.) $y'' + 6y' + 10y = cos(t), ~y(0) = 0, ~y'(0) = 0$ 3.8: 1-5, 7, 11, 14, 3.9: 1 - 8 Make sure you understand sections 3.8, 3.9 10.) Solve the following initial problems: 10a.) $y' + 3y + 1 = 0, ~y(0) = 0$ 10b.) $ , ~y(0) = 0$ *10c.) $cos(t)y'- sin(t)y = {1 \over t^2}, ~y(0) = 0$ 10d.) $y' = {3x^2 - 2 \over xy - xy^2}, ~y(0) = 0$ \eject Chapter 1: 11.) For each of the following, draw the direction field for the given differntial equation. Based on the direction field, determine the behavious of $y$ as $t \rightarrow \infty$. If this behaviour depends on the initial value of $y$ at $t=o$, describe this dependency. 11a.) $y' = y$ 11b.) $y' = 1$ 11c.) $y' = y(y + 4)$ Chapter 7: 12.) Transform the given equation into a system of first order equations: 12a.) $x''' - 2x'' + 3x' - 4x = t^2$ 12b.) $x'''' - 2x'' + 3x' - 4x = t^2$ Make sure you also study exam 1 and 2 as well as everything else. Remember the above list is INCOMPLETE. * means optional type problem. If a problem like 9c appeared on the final, it would be in the "choose" section. \end