Solving first order differential equation:

Method 1 (sect. 2.2): Separate variables.
Method 2 (sect. 2.1): If linear $\left[y^{\prime}(t)+p(t) y(t)=g(t)\right]$, multiply equation by an integrating factor $u(t)=e^{\int p(t) d t}$.

$$
\begin{gathered}
y^{\prime}+p y=g \\
y^{\prime} u+u p y=u g \\
(u y)^{\prime}=u g \\
\int(u y)^{\prime}=\int u g \\
u y=\int u g \\
\text { etc... }
\end{gathered}
$$

Method 3 (sect. 2.4): Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n}
$$

when $n>1$ by changing it to a linear equation by substituting $v=y^{1-n}$

If $v=\frac{d x}{d t}$, can use the following to simplify (especially if there are 3 variables).

$$
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}
$$

integration techniques: u-substitution, integrati parts, partial fractions.
direction field $=$ slope field $=$ graph of $\frac{d v}{d t}$ in $t, v-\mathrm{p}$ *** can use slope field to determine behavior including as $t \rightarrow \infty$.

Equilibrium Solution $=$ constant solution
stable, unstable, semi-stable.

Solving second order differential equation

p. $133: y^{\prime \prime}=f\left(t, y^{\prime}\right), y^{\prime \prime}=f\left(y, y^{\prime}\right)$,

Transform to first order: Let $v=y^{\prime}$.
If needed, note $v^{\prime}=\frac{d v}{d t}=\frac{d v}{d t} \frac{d y}{d y}=\frac{d v}{d y} \frac{d y}{d t}=\frac{d v}{d y} v$.
Note this trick sometimes helpful for first order ϵ tions.

Ch 3: linear
$a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y=e^{r t}$, then
$a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$ implies $a r^{2}+b r+c=0$,
Suppose $r=r_{1}, r_{2}$ are solutions to $a r^{2}+b r+c=0$

$$
r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $r_{1} \neq r_{2}$, then $b^{2}-4 a c \neq 0$. Hence a general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$

If $b^{2}-4 a c>0$, general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
If $b^{2}-4 a c<0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.
general solution is $y=c_{1} e^{d t} \cos (n t)+c_{2} e^{d t} \sin (n t)$ where $r=d \pm i n$

If $b^{2}-4 a c=0, r_{1}=r_{2}$, so need 2nd (independent) solution: $t e^{r_{1} t}$

Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$.

To solve $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)+\ldots g_{n}(t)$
1.) Find the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=$

$$
c_{1} \phi_{1}+c_{2} \phi_{2}
$$

2.) For each g_{i}, find a solution to $a y^{\prime \prime}+b y^{\prime}+c y$ ψ_{i}

This includes plugging guessed solution $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$ to find constant(s).

The general solution to [**] is

$$
c_{1} \phi_{1}+c_{2} \phi_{2}+\psi_{1}+\psi_{2}+\ldots \psi_{n}
$$

3.) If initial value problem:

Once general solution is known, can solve initial problem (i.e., use initial conditions to find c_{1}, c_{2}

Thm: Suppose that f_{1} is a a solution to $a y^{\prime \prime}+b y^{\prime}+$ $c y=g_{1}(t)$ and f_{2} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=$ $g_{2}(t)$, then $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=$ $g_{1}(t)+g_{2}(t)$

Proof:
Define $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$. Note that L is a linear function.

Since f_{1} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t), L\left(f_{1}\right)=$ $a f_{1}^{\prime \prime}+b f_{1}^{\prime}+c f_{1}=g_{1}(t)$.

Since f_{2} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t), L\left(f_{2}\right)=$ $a f_{2}^{\prime \prime}+b f_{2}^{\prime}+c f_{2}=g_{2}(t)$.

We will now show that $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+$ $b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$.
$L\left(f_{1}+f_{2}\right)=L\left(f_{1}\right)+L\left(f_{2}\right)=g_{1}(t)+g_{2}(t)$. Thus $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$.

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

Existence and Uniqueness

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a, b) \rightarrow R$ and $g:(a, b) \rightarrow I$ continuous and $a<t_{0}<b$, then there exists a ur function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfie initial value problem

$$
\begin{gathered}
y^{\prime}+p(t) y=g(t) \\
y\left(t_{0}\right)=y_{0}
\end{gathered}
$$

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a, b) \rightarrow R, q:(a, b) \rightarrow R$, $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, there exists a unique function $y=\phi(t), \phi:(a, b)$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \\
y\left(t_{0}\right)=y_{0} \\
y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{gathered}
$$

Definition: The Wronskian of two differential tions, f and g is

$$
W(f, g)=f g^{\prime}-f^{\prime} g=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|
$$

sections 3.2, 3.3

