Solving first order differential equation:

Method 1 (sect. 2.2): Separate variables.

Method 2 (sect. 2.1): If linear [y'(t)+p(t)y(t) = g(t)], multiply equation by an integrating factor $u(t) = e^{\int p(t)dt}$.

$$y' + py = g$$

$$y'u + upy = ug$$

$$(uy)' = ug$$

$$\int (uy)' = \int ug$$

$$uy = \int ug$$

etc...

Method 3 (sect. 2.4): Solve Bernoulli's equation,

$$y' + p(t)y = g(t)y^n,$$

when n > 1 by changing it to a linear equation by substituting $v = y^{1-n}$

If $v = \frac{dx}{dt}$, can use the following to simplify (especially if there are 3 variables).

$$\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx}$$

1

integration techniques: u-substitution, integration by parts, partial fractions.

direction field = slope field = graph of $\frac{dv}{dt}$ in t, v-plane.

*** can use slope field to determine behavior of v including as $t \to \infty$.

Equilibrium Solution = constant solution

stable, unstable, semi-stable.

Solving second order differential equation:

p. 133: y'' = f(t, y'), y'' = f(y, y'),

Transform to first order: Let v = y'.

If needed, note $v' = \frac{dv}{dt} = \frac{dv}{dt}\frac{dy}{dy} = \frac{dv}{dy}\frac{dy}{dt} = \frac{dv}{dy}v$.

Note this trick sometimes helpful for first order equations.

Ch 3: linear

ay'' + by' + cy = 0, $y = e^{rt}$, then $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ implies $ar^2 + br + c = 0$, Suppose $r = r_1, r_2$ are solutions to $ar^2 + br + c = 0$ $r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

If $r_1 \neq r_2$, then $b^2 - 4ac \neq 0$. Hence a general solution is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$

If $b^2 - 4ac > 0$, general solution is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

If $b^2-4ac < 0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.

general solution is $y = c_1 e^{dt} cos(nt) + c_2 e^{dt} sin(nt)$ where $r = d \pm in$

If $b^2 - 4ac = 0$, $r_1 = r_2$, so need 2nd (independent) solution: $te^{r_1 t}$

Hence general solution is $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$.

To solve
$$ay'' + by' + cy = g_1(t) + g_2(t) + \dots g_n(t)$$
 [**]
1.) Find the general solution to $ay'' + by' + cy = 0$:
 $c_1\phi_1 + c_2\phi_2$

2.) For each
$$g_i$$
, find a solution to $ay'' + by' + cy = g_i$:
 ψ_i

This includes plugging guessed solution into $ay'' + by' + cy = g_i$ to find constant(s).

The general solution to [**] is

$$c_1\phi_1 + c_2\phi_2 + \psi_1 + \psi_2 + \dots \psi_n$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).

Thm: Suppose that f_1 is a solution to $ay'' + by' + cy = g_1(t)$ and f_2 is a solution to $ay'' + by' + cy = g_2(t)$, then $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$

Proof:

Define L(f) = af'' + bf' + cf. Note that L is a linear function.

Since f_1 is a solution to $ay'' + by' + cy = g_1(t), L(f_1) = af''_1 + bf'_1 + cf_1 = g_1(t).$

Since f_2 is a solution to $ay'' + by' + cy = g_2(t), L(f_2) = af_2'' + bf_2' + cf_2 = g_2(t).$

We will now show that $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$.

 $L(f_1 + f_2) = L(f_1) + L(f_2) = g_1(t) + g_2(t)$. Thus $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$.

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

Existence and Uniqueness

1st order LINEAR differential equation:

Thm 2.4.1: If $p : (a, b) \to R$ and $g : (a, b) \to R$ are continuous and $a < t_0 < b$, then there exists a unique function $y = \phi(t), \phi : (a, b) \to R$ that satisfies the initial value problem

$$y' + p(t)y = g(t),$$

$$y(t_0) = y_0$$

2nd order LINEAR differential equation:

Thm 3.2.1: If $p : (a,b) \to R$, $q : (a,b) \to R$, and $g : (a,b) \to R$ are continuous and $a < t_0 < b$, then there exists a unique function $y = \phi(t), \phi : (a,b) \to R$ that satisfies the initial value problem

$$y'' + p(t)y' + q(t)y = g(t),$$

$$y(t_0) = y_0,$$

$$y'(t_0) = y'_0$$

Definition: The Wronskian of two differential functions, f and g is

$$W(f,g) = fg' - f'g = \begin{vmatrix} f & g \\ f' & g' \end{vmatrix}$$

sections 3.2, 3.3