Solving first order differential equation:

Method 1 (sect. 2.2): Separate variables.
Method 2 (sect. 2.1): If linear $\left[y^{\prime}(t)+p(t) y(t)=g(t)\right]$, multiply equation by an integrating factor $u(t)=e^{\int p(t) d t}$.

$$
\begin{gathered}
y^{\prime}+p y=g \\
y^{\prime} u+u p y=u g \\
(u y)^{\prime}=u g \\
\int(u y)^{\prime}=\int u g \\
u y=\int u g \\
\text { etc... }
\end{gathered}
$$

Method 3 (sect. 2.4): Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n},
$$

when $n>1$ by changing it to a linear equation by substituting $v=y^{1-n}$

If $v=\frac{d x}{d t}$, can use the following to simplify (especially if there are 3 variables).

$$
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}
$$

integration techniques: u-substitution, integration by parts, partial fractions.
direction field $=$ slope field $=$ graph of $\frac{d v}{d t}$ in t, v-plane. *** can use slope field to determine behavior of v including as $t \rightarrow \infty$.
Equilibrium Solution $=$ constant solution stable, unstable, semi-stable.

Solving second order differential equation:

p. $135: y^{\prime \prime}=f\left(t, y^{\prime}\right), y^{\prime \prime}=f\left(y, y^{\prime}\right)$,

Transform to first order: Let $v=y^{\prime}$.
If needed, note $v^{\prime}=\frac{d v}{d t}=\frac{d v}{d t} \frac{d y}{d y}=\frac{d v}{d y} \frac{d y}{d t}=\frac{d v}{d y} v$.
Note this trick sometimes helpful for first order equations.

Ch 3: linear $a y^{\prime \prime}+b y^{\prime}+c y=0$,
Need to have two independent solutions.
If ϕ_{1}, ϕ_{2} are solutions to a LINEAR HOMOGENEOUS \square differential equation, $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution

Existence and Uniqueness

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a, b) \rightarrow R$ and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime}+p(t) y=g(t) \\
y\left(t_{0}\right)=y_{0}
\end{gathered}
$$

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a, b) \rightarrow R, q:(a, b) \rightarrow R$, and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{gathered}
$$

Definition: The Wronskian of two differential functions, f and g is

$$
W(f, g)=f g^{\prime}-f^{\prime} g=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|
$$

Thm 3.2.4: Given (1) the hypothesis of thm 3.2.1
(2) ϕ_{1} and ϕ_{2} are 2 sol'ns to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0\left(^{*}\right)$ (3) $W\left(\phi_{1}, \phi_{2}\right)\left(t_{0}\right) \neq 0$, for some $t_{0} \in(a, b)$, then if f is a solution to $\left(^{*}\right)$, then $f=c_{1} \phi_{1}+c_{2} \phi_{2}$ for some c_{1} and c_{2}.

Thm 2.4.2: Suppose $z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are continuous on $(a, b) \times(c, d)$ and the point $\left(t_{0}, y_{0}\right) \in$ $(a, b) \times(c, d)$, then there exists an interval $\left(t_{0}-h, t_{0}+\right.$ $h) \subset(a, b)$ such that there exists a unique function $y=\phi(t)$ defined on $\left(t_{0}-h, t_{0}+h\right)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

Note the initial value problem

$$
y^{\prime}=y^{\frac{1}{3}}, y(0)=0
$$

has an infinite number of different solutions.

$$
\begin{gathered}
y^{-\frac{1}{3}} d y=d t \\
\frac{3}{2} y^{\frac{2}{3}}=t+C \\
y= \pm\left(\frac{2}{3} t+C\right)^{\frac{3}{2}} \\
y(0)=0 \text { implies } C=0
\end{gathered}
$$

Thus $y= \pm\left(\frac{2}{3} t\right)^{\frac{3}{2}}$ are solutions.
$y=0$ is also a solution, etc.
Compare to Thm 2.4.2:
$f(t, y)=y^{\frac{1}{3}}$ is continuous near $(0,0)$
But $\frac{\partial f}{\partial y}(t, y)=\frac{1}{3} y^{\frac{-2}{3}}$ is not continuous near (0,0) since it isn't defined at $(0,0)$.

