\magnification 1900 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip 3pt} \def\w{\vskip 13pt} No external force: homogeneous equation {$mu''(t) + \gamma u'(t) + ku(t) = 0, ~~m, \gamma, k \geq 0$} $mr^2 + \gamma r + k = 0$ implies $r_1, r_2 = {-\gamma \pm \sqrt{\gamma^2 - 4km} \over 2m}$ Case 1: ${\gamma^2 - 4km} < 0$ $r_1, r_2 = {-\gamma \pm \sqrt{\gamma^2 - 4km} \over 2m} = {-\gamma \pm \sqrt{(-1)(4km - \gamma^2)} \over 2m} = {-\gamma \pm i \sqrt{4km - \gamma^2} \over 2m}$ $u(t) = e^{-{\gamma t \over 2m}}(A cos \mu t + B sin \mu t) $ $= e^{-{\gamma t \over 2m}}R cos( \mu t - \delta) $ where $\mu = {\sqrt{4km - \gamma^2} \over 2m}$ and $A = Rcos(\delta)$, $B = Rsin(\delta)$ %%\hfil \break ($R = \sqrt{A^2 + B^2}$, $tan{\delta} = {B \over A})$ Note $A, B$ and hence $R, \delta$ depend on initial conditions. $\mu$ does not depend on initial conditions \hfil \break i.e., $\mu$ = quasi frequency and ${2\pi \over \mu}$ = quasi period do not depend on initial conditions. \vskip 9pt \hrule $\gamma = 0$: No damping $u(t) = A cos \mu t + B sin \mu t = R cos( \mu t - \delta)$ $\mu = {\sqrt{4km} \over 2m} = \sqrt{k \over m} = \omega_0 $ Example: $y'' + 9y = 0$ With damping: $\gamma \not= 0$, Small damping: $\gamma < 2\sqrt{km}$ ~~(i.e., ${\gamma^2 - 4km} < 0$). $y'' + y' + 9y = 0$ $y'' + 3y' + 9y = 0$ $u(t) = e^{-{\gamma t \over 2m}}(A cos \mu t + B sin \mu t) $ $= e^{-{\gamma t \over 2m}}R cos( \mu t - \delta) $ where $\mu = {\sqrt{4km - \gamma^2} \over 2m}$ and $A = Rcos(\delta)$, $B = Rsin(\delta)$ %%\hfil \break ($R = \sqrt{A^2 + B^2}$, $tan{\delta} = {B \over A})$ Note $A, B$ and hence $R, \delta$ depend on initial conditions. $\mu$ does not depend on initial conditions. Case 2: Critical Damping: $\gamma = 2\sqrt{km}$ $\gamma^2 - 4km = 0$: $u(t) = (A + Bt)e^{r_1t}$ $y'' + 6y' + 9y = 0$ Case 3: Over-damped: $\gamma > 2\sqrt{km}$ $\gamma^2 - 4km > 0$: $u(t) = Ae^{r_1t} + Be^{r_2t}$ $y'' + 7y' + 9y = 0$ $y'' + 10y' + 9y = 0$ \end