\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip -6pt} 2.3 Rocket motion in gravitational field (non-linear equation) \centerline{ $m x'' = - {mgR^2 \over (R + x)^2}$} Change to a system of first order equations: Let $v = x'$. Then $v' = x''$ \u (Instead of $x_1 = x$, $x_2 = x' = x_1'$, $x_2' = x'' $ Hence have the system of equations \centerline{$x' = v$} \centerline{${dv \over dt} = - {gR^2 \over (R + x)^2}$} Or equivalently in vector form \centerline{${d \over dt}\left(\matrix{x \cr v}\right) = \left(\matrix{ v \cr - {gR^2 \over (R + x)^2} }\right) $} Three variables, $x$, $v$, and $t$. Need to get rid of one in order to solve. \centerline{${dv \over dt} = {dv \over dx}{dx \over dt} = {dv \over dx}(v)$} \centerline{$v{dv \over dx} = - {gR^2 \over (R + x)^2}$} Separate variables and integrating: \centerline{$\int v{dv} = -\int {gR^2 \over (R + x)^2} dx$} Let $u = R + x$, $du = dx$ \centerline{${1\over 2}v^2 = - \int gR^2 u^{-2} dx$} \centerline{${1\over 2}v^2 = gR^2 u^{-1} + E_1$} \centerline{${1\over 2}v^2 = {gR^2 \over R + x} + E_1$} Kinetic energy: $m{1\over 2}v^2 $ Potential energy: ${mgR^2 \over R + x} $ Conservation of Energy: {$m{1\over 2}v^2 - {mgR^2 \over R + x} = E$} Note $E$ depends on initial conditions. \u $E$ fixed $\leftrightarrow$ initial conditions fixed. To study the solutions, can fix $E$ (or equivalently choose initial conditions) and graph \centerline {$m{1\over 2}v^2 - {mgR^2 \over R + x} = E$} \vskip -7pt in the $x, v$ - plane = $x, {dx \over dt}$- plane. Can also let $v = {dx \over dt}$ and integrate again and solve for $x$ in terms of $t$: {$m{1\over 2} {dx \over dt}^2 - {mgR^2 \over R + x} = E$} {${dx \over dt}^2 = {2E \over m} + {2gR^2 \over R + x} $} {${dx \over dt} = \sqrt{{2E \over m} + {2gR^2 \over R + x} }$} {${dx \over \sqrt{ {2E \over m} + {2gR^2 \over R + x} } } = dt$} {$\int {dx \over \sqrt{{2E \over m} + {2gR^2 \over R + x} }} = \int dt$}, Etc. \hrule 3.8: Mechanical Oscillator: $mx'' + \gamma x' + kx = F_ext$ $m$ = mass, $\gamma$ = damping constant, $k$ = spring constant Note $k$ denotes the hardness of the spring \u ($F_s = -kL$). Linear equation: $x'' + x = 0$ No damping. No external force. Hence general solution: $c_1 cos(t) + c_2 sin(t)$. Non-linear equation: $x'' + x + x^3 = 0$ Let $y = x'$, $y' = x''$: ~ $y'(t) + x(t) + [x(t)]^3 = 0$ System of equations \centerline{$x' = y$} \centerline{$y' = - x - x^3$} Or in vector notation \centerline{${d \over dt}\left(\matrix{x \cr y}\right) = \left(\matrix{ y \cr -x - x^3 }\right) $} Three variables, $x$, $y$, and $t$. Need to get rid of one in order to solve. \centerline{${dy \over dt} = {dy \over dx}{dx \over dt} = {dv \over dx}(y)$} \centerline{$y{dy \over dx} + x + x^3 = 0$} Separate variables and integrating: \centerline{$y{dy \over dx} = -(x + x^3) $} \centerline{$\int y{dy} = -\int (x + x^3)dx $} \centerline{${1 \over 2}y^2 = -({1 \over 2}x^2 + {1 \over 4}x^4) + E $} \centerline{${1 \over 2}y^2 + {1 \over 2}x^2 + {1 \over 4}x^4 = E $} \end