\magnification 1200 \parindent 0pt \parskip 20pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -17pt} \def\v{\vskip 3pt} \def\w{\vskip 13pt} {\bf Formulas} Gravitational force \vskip -13pt near earth's surface: $mg$ \vskip -13pt far from earth's surface: ${mgR^2 \over (R + x)^2}$ where $R$ is the radius of the earth. \vfill Definition: The Wronskian of two differential functions, $f$ and $g$ is \centerline{$W(f, g) = fg' - f'g = \big|\matrix{f & g \cr f' & g'}\big|$} \vfill $cos (y \mp x) = cos(x \mp y) = cos(x) cos(y) \pm sin(x)sin(y)$ \vfill Mechanical Vibrations: \centerline{$mu''(t) + \gamma u'(t) + ku(t) = F_{external}, ~~m, \gamma, k \geq 0$} \centerline{ $mg - kL = 0$, ~~~~~$F_{viscous}(t) = \gamma u'(t)$} $m$= mass, \u $k$ = spring force proportionality constant, \u $\gamma$ = damping force proportionality constant \u g = 9.8 m/sec \vskip 15 pt \vfill Electrical Vibrations: \vskip 4pt \centerline{$L{dI(t) \over dt} + RI(t) + {1 \over C}Q(t) = E(t), ~~L, R, C \geq 0 {\hbox{ and }} I = {dQ \over dt}$~~~~~~} $L$ = inductance (henrys), \u $R$ = resistance (ohms) \u $C$ = capacitance (farads) \u $Q(t)$ = charge at time $t$ (coulombs) \u $I(t)$ = current at time $t$ (amperes) \u $E(t)$ = impressed voltage (volts). 1 volt = 1 ohm $\cdot$ 1 ampere = 1 coulomb / 1 farad = 1 henry $\cdot$ 1 amperes/ 1 second \end