\magnification 1200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip -5pt} Note the following review problems DO NOT cover all problem types which may appear on the final. 6.3 preliminaries: 1a.) Suppose $f(t) = t^2$, then $f(t-2) = \underline{(t-2)^2}$ 1b.) Suppose $f(t) = t^2 + 3t + 4$, then $f(t-2) = \underline{(t-2)^2 + 3(t-2) + 4}$ 1c.) Suppose $f(t) = sin(t) + e^{8t}$, then $f(t-2) = \underline{sin(t-2) + e^{8(t-2)}}$ 2a.) Suppose $f(t-2) = (t-2)^2$, then $f(t) = \underline{ t^2}$ 2b.) Suppose $f(t-2) = (t-2)^2 + 3(t-2) + 4$, then $f(t) = \underline{t^2 + 3t + 4}$ 2c.) Suppose $f(t-2) = sin(t-2) + e^{8(t-2)}$, then $f(t) = \underline{sin(t) + e^{8t}}$ 3a.) Suppose $f(t-2) = t^2 + 2t + 5$, then $f(t) = \underline{t^2 + 6t + 13}$ $t^2 + 2t + 5 = (t-2)^2 + 4t - 4 + 2t + 5 = (t-2)^2 + 6t + 1 = (t-2)^2 + 6(t-2) + 12 + 1 $ \u $=(t-2)^2 + 6(t-2) + 13$ Check: $f(t-2) = (t-2)^2 + 6(t-2) + 13 = t^2 - 4t + 4 + 6t - 12 + 13 = t^2 + 2t + 5$ 3b.) Suppose $f(t-2) = 3t^2 + 8t + 1$, then $f(t) = \underline{3t^2 + 20t + 29}$ $ 3t^2 + 8t + 1 = 3(t-2)^2 - 3(-4t + 4) + 8t + 1 = 3(t-2)^2 + 12t -12 + 8t + 1$ \u $ = 3(t-2)^2 + 20t - 11 = $ \u $3(t-2)^2 + 20(t-2) + 40 - 11 = 3(t-2)^2 + 20(t-2) + 29$ Check: $f(t-2) = 3(t-2)^2 + 20(t-2) + 29 = 3(t^2 - 4t + 4 ) + 20t - 40 + 29 = 3t^2 - 12t + 12 + 20t - 11 = 3t^2 + 8t + 1$ 3c.) Suppose $f(t-2) = cos(t) + e^{8t}$, then $f(t) = \underline{cos(t+2) + e^{8t + 16}} $ $cos(t) + 4^{8t} = cos(t-2 + 2) + e^{8(t-2) + 16}$ Check: $f(t-2) = cos(t-2+2) + e^{8(t-2) + 16} = cos(t) + e^{8t-16 + 16} = cos(t) + e^{8t}$ Chapter 6: 4.) Find the LaPlace transform of the following: (used ${\cal L}(u_c(t)f(t-c)) = e^{-cs}{\cal L}(f(t))$) 4a.) ${\cal L}(u_3(t^2 - 2t + 1)) = \underline{ e^{-3s}({2 \over s^3} + 4{1 \over s^2} + {4 \over s})} $ ${\cal L}(u_3(t^2 - 2t + 1)) = {\cal L}(u_3((t-3)^2 + 6t - 9 - 2t + 1)) = {\cal L}(u_3((t-3)^2 + 4t - 8)) = {\cal L}(u_3 ( (t-3)^2 + 4(t-3) + 12 - 8 ) ) = {\cal L}(u_3 ( (t-3)^2 + 4(t-3) + 4 ) ) = e^{-3s}{\cal L}( t^2 + 4t + 4 ) ) = e^{-3s}({2 \over s^3} + 4{1 \over s^2} + {4 \over s})$ 4b.) ${\cal L}(u_4(e^{-8t})) = \underline{e^{-4s-32}{1 \over s + 8}} $ ${\cal L}(u_4e^{-8t} ) = {\cal L}(u_4e^{-8(t-4) - 32}) = e^{-4s}{\cal L}(e^{-8t - 32} ) = e^{-4s}e^{-32}{\cal L}(e^{-8t} ) = e^{-4s-32}{1 \over s + 8}$ 4c.) $ {\cal L}(u_2(t^2e^{3t})) = \underline{e^{-2s+ 6}({2 \over (s - 3)^3} + {4 \over (s - 3)^2} + {4 \over (s - 3)} ) } $ $ {\cal L}(u_2(t^2e^{3t})) = {\cal L}(u_2([(t-2)^2 + 4t - 4]e^{3(t-2) + 6})) = {\cal L}(u_2([(t-2)^2 + 4(t-2) + 8 - 4]e^{3(t-2) + 6})) = {\cal L}(u_2([(t-2)^2 + 4(t-2) + 4]e^{3(t-2) + 6})) = e^{-2s}{\cal L}([t^2 + 4t + 4]e^{3t + 6})) = e^{-2s}e^6{\cal L}([t^2 + 4t + 4]e^{3t})) = e^{-2s}e^6{\cal L}(t^2e^{3t} + 4te^{3t} + 4e^{3t})) = e^{-2s+ 6}({2 \over (s - 3)^3} + 4{1 \over (s - 3)^2} + {4 \over (s - 3)} )$ 5.) Find the inverse LaPlace transform of the following: (usually used $u_c(t)f(t-c) = {\cal L}^{-1}(e^{-cs}{\cal L}(f(t))) 5a.) $ {\cal L}^{-1}(e^{-8s}{1 \over s - 3}) = \underline{u_8(t)e^{3(t-8)}} $ ${\cal L}^{-1}(e^{-8s}{1 \over s - 3}) = u_8f(t-8)$ where ${\cal L}(f(t)) = {1 \over s - 3})$. Hence $f(t) = {\cal L}^{-1}({1 \over s - 3}) = e^{3t}$ 5b.) ${\cal L}^{-1}(e^{4s}{1 \over s^2 - 3}) = \underline{ u_{-4}(t){1 \over \sqrt{3}} \ sinh(\sqrt{3}(t + 4))} $ ${\cal L}^{-1}(e^{4s}{1 \over s^2 - 3}) = u_{-4}(t)f(t+4)$ where ${\cal L}(f(t)) = {1 \over s^2 - 3})$. Hence $f(t) = {1 \over \sqrt{3}}{\cal L}^{-1}({\sqrt(3) \over s^2 - 3}) = {1 \over \sqrt{3}}sinh(\sqrt{3}t)$ 5c.) ${\cal L}^{-1}(e^{s}{1 \over (s - 3)^2 + 4}) = \underline{{1 \over 2}u_{-1}(t)e^{3(t+1)}sin(2(t+ 1))} $ ${\cal L}^{-1}(e^{s}{1 \over (s - 3)^2 + 4}) = u_{-1}(t)f(t+1)$ where ${\cal L}(f(t)) = {1 \over (s - 3)^2 + 4})$. Hence $f(t) = {1 \over 2}{\cal L}^{-1}({2 \over (s - 3)^2 + 4}) = {1 \over 2}e^{3t}sin(2t)$ 5d.) ${\cal L}^{-1}(e^{-s}{5 \over (s - 3)^4}) = \underline{u_{1}(t){5 \over 6}(t-1)^3e^{3(t-1)}} $ ${\cal L}^{-1}(e^{-s}{5 \over (s - 3)^4}) = u_{1}(t)f(t-1)$ where ${\cal L}(f(t)) = {5 \over (s - 3)^4})$. Hence $f(t) = {5 \over 6}{\cal L}^{-1}({6 \over (s - 3)^4}) = {5 \over 6}t^3e^{3t}$ 5e.) ${\cal L}^{-1}(e^{s} \over 4s) = \underline{{1 \over 4} u_{-1}(t)} $ ${\cal L}^{-1}(e^{s} \over 4s) $ $= {1 \over 4}{\cal L}^{-1}(e^{s} \over s)$ $= {1 \over 4} u_{-1}(t)f(t+1)$ where ${\cal L}(f(t)) = {1 \over s}$. Hence $f(t) = 1$. Thus $f(t+1) = 1$ 5f.) ${\cal L}^{-1}(e^{s}) = \underline{\delta(t + 1)} $ 6.) Use the definition and not the table to find the LaPlace transform of the following: 6a.) ${\cal L}(t^2) = \underline{{ 2 \over s^3}} $ $\int_0^\infty e^{-st}t^2 dt $ $= t^2 {e^{-st} \over -s} |_0^\infty - \int_0^\infty 2t{e^{-st} \over -s}$ $= lim_{t \rightarrow \infty} t^2 {e^{-st} \over -s} - 0^2 {e^{0} \over -s} - [2t{e^{-st} \over s^2}|_0^\infty - \int_0^\infty 2{e^{-st} \over s^2}]$ \v $= 0 - 0 - [lim_{t \rightarrow \infty}2t{e^{-st} \over s^2} - 2(0){e^{0} \over s^2} - 2{e^{-st} \over -s^3}|_0^\infty ]$ $= - [0 - 0 - (lim_{t \rightarrow \infty}2{e^{-st} \over -s^3} - 2{e^{0} \over -s^3}) ]$ $= (0 - {2 \over -s^3}) ]$ $= { 2 \over s^3} $ Let $u = t^2, ~ dv = e^{-st}$ \v ~~~~$du = 2t, ~v = {e^{-st} \over -s}$ \v ~~~~$d^2u = 2, ~ \int v = {e^{-st} \over s^2}$ 6b.) ${\cal L}(cos(t)) = \underline{{s \over 1 + s^2} } $ $\int_0^\infty e^{-st}cos(t) dt = e^{-st}sin(t)|_0^\infty - \int_0^\infty -se^{-st}sin(t)dt$ $= lim_{t \rightarrow \infty} e^{-st}sin(t) - e^0sin(0) - [se^{-st}cos(t)|_0^\infty - \int_0^\infty -s^2e^{-st}cos(t)dt] $ $= 0 - 0 - [lim_{t \rightarrow \infty} se^{-st}cos(t) - se^0cos(0) + s^2 \int_0^\infty e^{-st}cos(t)dt] $ $= -[0 - s + s^2 \int_0^\infty e^{-st}cos(t)dt] $ $= s - s^2 \int_0^\infty e^{-st}cos(t)dt $ Hence $\int_0^\infty e^{-st}cos(t) dt = s - s^2 \int_0^\infty e^{-st}cos(t)dt $ Thus $\int_0^\infty e^{-st}cos(t) dt + s^2 \int_0^\infty e^{-st}cos(t)dt = s $ Thus $(1 + s^2)\int_0^\infty e^{-st}cos(t) dt = s $ Thus $\int_0^\infty e^{-st}cos(t) dt = {s \over 1 + s^2} $ Let $u = e^{-st}, ~dv = cos (t)$ ~~~~$du = -se^{-st}, ~ v = sin(t)$ ~~~$d^2u = s^2e^{-st}, \int v = -cos(t)$ 7.) Find the inverse LaPlace transform of the following. Leave your answer in terms of a convolution integral: 7a.) ${\cal L}^{-1}({1 \over (s-2)(s^2 + 4)}) = \underline{{1\over 2}\int_0^t e^{2(t- s)} sin(2s)ds} $ ${\cal L}^{-1}({1 \over (s-2)(s^2 + 4)}) = {\cal L}^{-1}({1 \over (s-2)}) * {\cal L}^{-1}({1 \over (s^2 + 4)}) = e^{2t} * {1 \over 2}sin(2t) = {1\over 2}\int_0^t e^{2(t- s)} sin(2s)ds$ 7b.) ${\cal L}^{-1}({1 \over (s-2)(s^2 - 4s + 5)}) = \underline{\int_0^t e^{2(t-s} e^{2s}sin(s)ds } $ ${\cal L}^{-1}({1 \over (s-2)})*{\cal L}^{-1}({1 \over (s^2 - 4s + 5)}) $ = ${\cal L}^{-1}({1 \over (s-2)})*{\cal L}^{-1}({1 \over (s-2)^2 + 1)})$ = $e^{2t} * e^{2t}sin(t) = \int_0^t e^{2(t-s)} e^{2s}sin(s)ds$ Note we can easily calculate this integral: $= \int_0^t e^{2t}e^{-2s} e^{2s}sin(s)ds = \int_0^t e^{2t}sin(s)ds = e^{2t}\int_0^t sin(s)ds = -e^{2t}cos(s)|_0^t = -e^{2t}cos(t) + e^{2t}$ 7c.) ${\cal L}^{-1}({ 2s \over (s-2)(s^2 - 4s + 5)}) = \underline{= 2\int_0^t e^{2(t-s)} (e^{2s}cos(s) + 2e^{2s}sin(s)) ds} $ ${\cal L}^{-1}({ 2s \over (s-2)(s^2 - 4s + 5)}) $ $= 2{\cal L}^{-1}({ 1 \over (s-2)} \cdot {s -2 + 2\over ((s-2)^2 + 1)}) $ $= 2{\cal L}^{-1}({ 1 \over (s-2)} \cdot [{s -2 \over ((s-2)^2 + 1)} + {2 \over ((s-2)^2 + 1)}]) $ $= 2e^{2t} * (e^{2t}cos(t) + 2e^{2t}sin(t))$ $= 2\int_0^t e^{2(t-s)} (e^{2s}cos(s) + 2e^{2s}sin(s)) ds$ Note we can easily calculate this integral: $= 2e^{2t}\int_0^t e^{-2s} (e^{2s}cos(s) + 2e^{2s}sin(s)) ds$ $= 2e^{2t}\int_0^t cos(s) + 2sin(s)) ds$ $= 2e^{2t}[sin(s) - 2cos(s)]|_0^t$ $= 2e^{2t}[sin(t) - 2cos(t) - ( 0 - 2)] $ $= 2e^{2t}[sin(t) - 2cos(t) + 2] $ 8.) Find $f*g$ 8a.) $4t*5t^4 = \underline{{ 2 \over 3}t^6 } $ $\int_0^t 4(t-s) 5s^4 ds = \int_0^t 20(ts^4- s^5) ds = 4ts^5 - {20 \over 6}s^6 |_0^t = 4t^6 - {10 \over 3}t^6 = {2 \over 3}t^6 8b.) $5t^4*4t = \underline{{2 \over 3}t^6 } $ $5t^4*4t = 4t*5t^4 = {2 \over 3}t^6 $ 8c.) $sin(t)*e^t = \underline{{1 \over 2}(-sin(t) - cos(t) + e^t)} $ $ \int_0^t e^{t-s}sin(s)ds = \int_0^t e^{t}e^{-s}sin(s)ds = $ $e^t\int_0^t e^{-s}sin(s)ds = e^t[-e^{-s}sin(s)|_0^t - \int_0^t -e^{-s}cos(s)ds] $= e^t[-e^{-t}sin(t) - -e^0 sin(0) - \{e^{-s}cos(s)|_0^t - \int_0^t -e^{-s}sin(s)ds\}]$ $= e^t[-e^{-t}sin(t) - \{(e^{-t}cos(t) - e^0 cos(0)) - \int_0^t -e^{-s}sin(s)ds\}]$ $= e^t[-e^{-t}sin(t) - e^{-t}cos(t) + 1 - \int_0^t e^{-s}sin(s)ds]$ $= -sin(t) - cos(t) + e^t - e^t\int_0^t e^{-s}sin(s)ds$ Hence $e^t\int_0^t e^{-s}sin(s)ds =-sin(t) - cos(t) + e^t - e^t\int_0^t e^{-s}sin(s)ds$ Hence $2e^t\int_0^t e^{-s}sin(s)ds =-sin(t) - cos(t) + e^t$ Hence $e^t\int_0^t e^{-s}sin(s)ds ={1 \over 2}(-sin(t) - cos(t) + e^t)$ Let $u = sin(s), ~ dv = e^{-s}$ ~~~~$du = cos(s), ~v = -e^{-s}$ ~~~$d^2u = -sin(s), ~ \int v = e^{-s}$ Make sure you can also solve a quick differential equation using the LaPlace transform and use any of the formulas on p. 304. Chapter 3: 9.) Solve the following initial problems: 9a.) $y'' + 6y' + 8y = 0, ~y(0) = 0, ~y'(0) = 0 $ Suppose $y = e^{rt}$. Then $y' = re^{rt}, ~y'' = r^2e^{rt}$ $r^2e^{rt} + 6re^{rt} + 8e^{rt} = 0$ Hence $r^2 + 6r + 8 = 0$. Thus, (r + 2)(r + 4) = 0$. Hence $r = -2, -4$ Hence general solution is $y(t) = c_1e^{-2t} + c_2e^{-4t}$ $y(0) = 0: 0 = c_1 + c_2$. Thus $c_2 = -c_1$ $y'(0) = 0: y' = -2c_1e^{-2t} - 4c_2e^{-4t}$ $0 = -2c_1 - 4c_2 = 2c_2 - 4c_2 = -2c_2$ Thus $c_2 = 0, c_1 = 0$ Thus, $y(t) = 0$ is the solution to the initial value problem. 9b.) $y'' + 6y' + 9y = 0, ~y(0) = 0, ~y'(0) = 0 $ $r^2 + 6r + 9 = (r + 3)(r +3) = 0$ Hence general solution is $y(t) = c_1e^{-3t} + c_2te^{-3t}$ $y(0) = 0: 0 = c_1 + c_2(0)$. Thus $c_1 = 0$ $y = c_2te^{-3t}$ $y' = c_2[e^{-3t} -3t e^{-3t}]$ $y'(0) = 0: 0 = c_2[e^{0} -3(0) e^{0}] $. Thus $c_2 = 0$. Thus, $y(t) = 0$ is the solution to the initial value problem. 9c.) $y'' + 6y' + 10y = 0, ~y(0) = 0, ~y'(0) = 0$ $r^2 + 6r + 10 = 0$, $r = {-6 \pm \sqrt{36 - 4(1)(10)} \over 2} = {-6 \pm 2i \over 2} = -3 \pm i$ Hence general solution is $y(t) = c_1e^{-3t}sin(t) + c_2e^{-3t}cos(t)$ $y(0) = 0: 0 = c_1(0) + c_2(1)$. Thus $c_2 = 0$ $y = c_1 e^{-3t}sin(t) $ $y' = c_1[-3 e^{-3t}sin(t) + e^{-3t}cos(t)] $y'(0) = 0: 0 = c_1[0 + 1] $. Thus $c_1 = 0$. Thus, $y(t) = 0$ is the solution to the initial value problem. Quicker method to solve 9a, b, c: Note that $y = 0$ was the obvious solution to the initial value problems in 9a, b, c. Clearly the constant function $y(t) = 0$ satisfies $ay'' + by' + cy = 0$ for any $a,~ b,~ c$. It also satisfies $y(0) = 0, ~y'(0) = 0$. Thus this constant function is a solution to IVP of this type. Since IVP of this type have unique solutions, $y(t) = 0$ is the only solution. 9d.) $y'' + 6y' + 8y = cos(t), ~y(0) = 0, ~y'(0) = 0 $ Guess $y = Acos(t) + Bsin(t) $ is a solution. Then $y' = -Asin(t) + Bcos(t)$ and $y'' = -Acos(t) - Bsin(t)$ $-Acos(t) - Bsin(t) + 6(-Asin(t) + Bcos(t)) + 8(Acos(t) + Bsin(t)) = cos(t)$ $(-A + 6B + 8A) cos(t) + (-B -6A + 8B) sin(t) = cos(t)$ $(6B + 7A) cos(t) + (-6A + 7B) sin(t) = cos(t) + 0 sin(t)$ $cos(t)$ and $sin(t)$ are linearly independent functions, Hence $ (-6A + 7B) sin(t) = 0 sin(t)$. Thus $-6A + 7B = 0$ so $A = {7 \over 6}B $ And $(6B + 7A) cos(t) = cos(t)$. Thus $6B + 7A = 1$, so $6B + 7({7 \over 6}B ) = 1$. ${36 + 49 \over 6}B = {85 \over 6}B = 1$ Thus $B = {6 \over 85} $ and $A = {7 \over 85} $. Check: $-{7 \over 85} cos(t) - {6 \over 85} sin(t) + 6(-{7 \over 85} sin(t) + {6 \over 85} cos(t)) + 8({7 \over 85} cos(t) + {6 \over 85} sin(t)) = (-{7 \over 85} + {36 \over 85} + {56 \over 85})cos(t) + (- {6 \over 85} - {42 \over 85} + {48 \over 85} )sin(t) = cos(t)$ Thus general solution is $y(t) = c_1e^{-2t} + c_2e^{-4t} + {7 \over 85} cos(t) + {6 \over 85} sin(t) $ Use initial values to find $c_1, ~c_2$: $0 = c_1 + c_2 + {7 \over 85} + 0$. Hence $c_1 = -c_2 - {7 \over 85}$ $y'(t) = -2c_1e^{-2t} + -4c_2e^{-4t} - {7 \over 85} sin(t) + {6 \over 85} cos(t) $ $0 = -2c_1 - 4c_2 - 0 + {6 \over 85} = -2(-c_2 - {7 \over 85} )- 4c_2 + {6 \over 85} = 2c_2 + {14 \over 85} - 4c_2 + {6 \over 85} = -2c_2 + {20 \over 85}$ Thus $2c_2 = {20 \over 85}$ or $c_2 = {10 \over 85} $ and $c_1 = -{10 \over 85} - {7 \over 85} = -{17 \over 85}$ Note these are NOT the same values for $c_1$ and $c_2$ for the homogeneous case. The the solution to the initial value problem is $y(t) = -{17 \over 85}e^{-2t} + {10 \over 85} e^{-4t} + {7 \over 85} cos(t) + {6 \over 85} sin(t) $ 9e.) $y'' + 6y' + 9y = cos(t), ~y(0) = 0, ~y'(0) = 0 $ Guess $y = Acos(t) + Bsin(t) $ is a solution. Then $y' = -Asin(t) + Bcos(t)$ and $y'' = -Acos(t) - Bsin(t)$ $-Acos(t) - Bsin(t) + 6(-Asin(t) + Bcos(t)) + 9(Acos(t) + Bsin(t)) = cos(t)$ $(-A + 6B + 9A) cos(t) + (-B -6A + 9B) sin(t) = cos(t)$ $(6B + 8A) cos(t) + (-6A + 8B) sin(t) = cos(t) + 0 sin(t)$ $cos(t)$ and $sin(t)$ are linearly independent functions, Hence $ (-6A + 8B) sin(t) = 0 sin(t)$. Thus $-6A + 8B = 0$ so $A = {8 \over 6}B = {4 \over 3}B $ And $(6B + 8A) cos(t) = cos(t)$. Thus $6B + 8A = 1$, so $6B + 8({4 \over 3}B ) = 1$. ${18 + 32 \over 3}B = {50 \over 3}B = 1$ Thus $B = {3 \over 50} $ and $A = {8 \over 100} = {2 \over 25}$. Thus general solution is $y(t) = c_1e^{-3t} + c_2te^{-3t} + {2 \over 25} cos(t) + {3 \over 50} sin(t) $ Use initial values to find $c_1, ~c_2$: $0 = c_1 + c_2(0) + {2 \over 25} + 0$. Hence $c_1 = - {2 \over 25}$ $y'(t) = -3c_1e^{-3t} + c_2e^{-3t} - 3c_2te^{-3t} - {2 \over 25} sin(t) + {3 \over 50} cos(t) $ $0 = -3c_1 + c_2 - 0 - 0 + {3 \over 50} = -3(- {2 \over 25} ) + c_2 + {3 \over 50} = {6 \over 25} + c_2 + {3 \over 50} = c_2 + {15 \over 50}$ Thus $c_2 = -{15 \over 50} $ and $c_1 = -{2 \over 25} $ Note these are NOT the same values for $c_1$ and $c_2$ for the homogeneous case. The the solution to the initial value problem is $y(t) = -{2 \over 25} e^{-3t} -{15 \over 50} te^{-3t} + {2 \over 25} cos(t) + {3 \over 50} sin(t) $ Check: $y(0) = -{2 \over 25} + 0 + {2 \over 25} = 0$ $y'(t) = {6 \over 25} e^{-3t} + {45 \over 50} te^{-3t} -{15 \over 50} e^{-3t} - {2 \over 25} sin(t) + {3 \over 50} cos(t) $ $y'(0) = {6 \over 25} + 0 -{15 \over 50} - 0 + {3 \over 50} = {12 - 15 + 3 \over 50} = 0 $ Thus initial conditions are satisfied. To fully check that this is the solution, should check if $y'' + 6y' + 9y = cos(t)$ 9f.) $y'' + 6y' + 10y = cos(t), ~y(0) = 0, ~y'(0) = 0$ Hence general solution to the homogeneous equation is $y(t) = c_1e^{-3t}sin(t) + c_2e^{-3t}cos(t)$ Thus $y = Acos(t) + Bsin(t) $ is not a solution to the homogeneous equation. Guess $y = Acos(t) + Bsin(t) $ is a solution. Then $y' = -Asin(t) + Bcos(t)$ and $y'' = -Acos(t) - Bsin(t)$ $-Acos(t) - Bsin(t) + 6(-Asin(t) + Bcos(t)) + 10(Acos(t) + Bsin(t)) = cos(t)$ $(-A + 6B + 10A) cos(t) + (-B -6A + 10B) sin(t) = cos(t)$ $(6B + 9A) cos(t) + (-6A + 9B) sin(t) = cos(t) + 0 sin(t)$ $cos(t)$ and $sin(t)$ are linearly independent functions, Hence $ (-6A + 9B) sin(t) = 0 sin(t)$. Thus $-6A + 9B = 0$ so $A = {9 \over 6}B = {3 \over 2}B $ And $(6B + 9A) cos(t) = cos(t)$. Thus $6B + 9A = 1$, so $6B + 9({3 \over 2}B ) = 1$. ${12 + 27 \over 2}B = {39 \over 2}B = 1$ Thus $B = {2 \over 39} $ and $A = {3 \over 39} = {1 \over 13}$. Thus general solution is $y(t) = c_1e^{-3t}sin(t) + c_2e^{-3t}cos(t) + {2 \over 39} cos(t) + {3 \over 39} sin(t) $ Use initial values to find $c_1, ~c_2$: $0 = c_1(0) + c_2(1) + {2 \over 39} + 0$. Hence $c_2 = - {2 \over 39} $ $y'(t) = -3c_1e^{-3t}sin(t) + c_1e^{-3t}cos(t) -3c_2e^{-3t}cos(t) - c_2e^{-3t}sin(t) - {2 \over 39} sin(t) + {3 \over 39} cos(t) $ $0 = 0 + c_1 -3c_2 + 0 - 0 + {3 \over 39} $ Thus $c_1 = 3c_2-{3 \over 39} = 3(- {2 \over 39}) -{3 \over 39} = {-12 \over 39} {-4 \over 13} $ Note these are NOT the same values for $c_1$ and $c_2$ for the homogeneous case. The the solution to the initial value problem is $y(t) = {-4 \over 13}e^{-3t}sin(t) + - {2 \over 39} e^{-3t}cos(t) + {2 \over 39} cos(t) + {3 \over 39} sin(t) $ Check: $y(0) = 0 - {2 \over 39} + {2 \over 39} + 0 = 0$ To fully check that this is the solution, should check if $y'' + 6y' + 9y = cos(t)$ and if $y'(0) = 0$. 3.8: 1-5, 7, 11, 14, 3.9: 1 - 8 Make sure you understand sections 3.8, 3.9 10.) Solve the following initial problems: 10a.) $y' + 3y + 1 = 0, ~y(0) = 0$ Method 1: separate variable ${dy \over dx} = -3y-1$ ${dy \over -3y-1} = dx$ $\int {dy \over -3y-1} = \int dx$ Let $u = -3y - 1$, $du = -3dy$ $-{1 \over 3} \int {du \over u} = \int dx$ $-{1 \over 3} ln(u) = x + C$ $ln(-3y - 1) = -3x + C_1$ $-3y - 1 = e^{-3x + C_1}$ $-3y = e^{-3x}e^{C_1} + 1$ $y = {1 \over 3}e^{C_1}e^{-3x} - {1 \over 3}$ $y = Ke^{-3x} - {1 \over 3}$ $y(0) = 0: 0 = K - {1 \over 3}$. Hence $K = {1 \over 3}$ Thus $y = {1 \over 3}e^{-3x} - {1 \over 3}$ Method 2: integrating factor: $y' + 3y = -1$ Let $u = e^{\int 3 dx} = e^{3x}$ $e^{3x}y' + 3e^{3x}y = -e^{3x}$ $(e^{3x}y)' = -e^{3x}$ $\int(e^{3x}y)' = -\int e^{3x}$ $e^{3x}y = -{1 \over 3}e^{3x} + C$ $y = -{1 \over 3} + Ce^{-3x}$ $y(0) = 0: 0 = -{1 \over 3} + C$. Hence $C = {1 \over 3}$ Thus $y = {1 \over 3}e^{-3x} - {1 \over 3}$ Method 3: LaPlace transform: ${\cal L}(y') + 3{\cal L}(y) = -{\cal L}(1)$ $s{\cal L}(y) + y(0) + 3{\cal L}(y) = -{1 \over s}$ $(s + 3){\cal L}(y) = -{1 \over s}$ ${\cal L}(y) = -{1 \over s(s + 3) } = -{1 \over 3}[{1 \over s} - {1 \over s + 3}]$ $y = -{1 \over 3}[1 - e^{-3x}]$ 10b.) $ , ~y(0) = 0$ *10c.) $cos(t)y'- sin(t)y = {1 \over t^2}, ~y(0) = 1$ Note $cos(t)y'- sin(t)y = (cos(t)y)'$ $\int (cos(t)y)' = \int {1 \over t^2} dt$ $cos(t)y = -t^{-1} + C = {-1 + Ct \over t}$ $y(0) = 0$: $0 = -1 + C$. Hence $C = 1$. $y = {-1 + Ct \over tcos(t)}$ 10d.) $y' = {3x^2 - 2 \over xy - xy^2}, ~y(e) = 0$ ${dy \over dx} = {3x^2 - 2 \over x(y - y^2)}$ ${(y - y^2)dy} = {3x^2 - 2 \over x}dx$ $int{(y - y^2)dy} = \int[3x - {2 \over x}]dx$ ${1 \over 2}y^2 - {1 \over 3}y^3 = {3 \over 2}x^2 - 2ln(x) + C$ $y(0) = 0$: $0 = {3 \over 2}e^2 - 2ln(e) + C$ $C = 2 ln(e) - {3 \over 2}e^2 = 2 - {3 \over 2}e^2$ Answer: ${1 \over 2}y^2 - {1 \over 3}y^3 = {3 \over 2}x^2 - 2ln(x) + 2 - {3 \over 2}e^2$ Chapter 1: 11.) For each of the following, draw the direction field for the given differential equation. Based on the direction field, determine the behavior of $y$ as $t \rightarrow \infty$. If this behavior depends on the initial value of $y$ at $t=o$, describe this dependency. 11a.) $y' = y$ 11a.) $y' = 1$ 11a.) $y' = y(y + 4)$ Chapter 7: 12.) Transform the given equation into a system of first order equations: 12a.) $x''' - 2x'' + 3x' - 4x = t^2$ ~~~~~~~$x_1 = x$ $x_1' = x_2 = x'$ $x_2' = x_3 = x''$ $x_3' = x'''$ Answer: $x_1' = x_2$, $x_2' = x_3$, $x_3' - 2x_3 + 3x_2 - 4x_1 = t^2$ 12b.) $x'''' - 2x'' + 3x' - 4x = t^2$ ~~~~~~~$x_1 = x$ $x_1' = x_2 = x'$ $x_2' = x_3 = x''$ $x_3' = x_4 = x'''$ $x_4' = x''''$ Answer: $x_1' = x_2$, $x_2' = x_3$, $x_3' = x_4$, $x_4' - 2x_3 + 3x_2 - 4x_1 = t^2$ Make sure you also study exam 1 and 2 as well as everything else. Remember the above list is INCOMPLETE. * means optional type problem. If a problem like 9c appeared on the final, it would be in the "choose" section. \end