Math 34 Differential Equations Final Exam December 15, 2003

Choose 10 of the following 11 problems. If you choose fewer than 10, the points for the remaining problems will be appropriately averaged. 3 of the problems have 1 point extra credit available (indicated by [1-EC]). You can do the extra credit even if you do not choose these problems.

[3] 1a.) Without using the LaPlace transform, solve the following initial value problem: $y'' + 2y' + y = 0, \ y(0) = 0, \ y'(0) = 4$

Answer 1a.) _____

[4] 1b.) Without using the LaPlace transform, find the general solution to the differential equation $y'' + 2y' + y = e^{-t}$

[3] 1c.) Without using the LaPlace transform, solve the following initial value problem: $y'' + 2y' + y = e^{-t}, \ y(0) = 0, \ y'(0) = 4$

Answer 1c.)

[10] 2.) Use the LaPlace transform to solve the following initial value problem: $y'' + 2y' + y = e^{-t}, \ y(0) = 0, \ y'(0) = 4$

Answer 2.) _____

^{[1-}EC] 2a.) How can you use the LaPlace transform to find the general solution to a differential equation.

[10] 3.) Find the inverse LaPlace transform of $e^{-3s} \frac{s}{s^2+8s+18}$

Answer 3.) _____

[10] 4.) Use the definition and not the table to find the LaPlace transform of $f(t) = 3t^2$. CLEARLY indicate when you are taking a limit. [5] 5a.) Find the inverse LaPlace transform $\frac{1}{(s-3)(s^2-6s+10)}$ by using the convolution integral. Leave your answer in terms of a convolution integral:

Answer 5a.)

[5] 5b.) Evaluate the convolution integral obtained in 3a.

[10] 6.) Solve the following initial value problem: $\frac{y'}{t^2} = -3y + 1$, y(0) = 0

Answer 6.) _____

[10] 7.) Draw the direction field for the differential equation y' = (y-2)(y+2). Based on the direction field, determine the behavior of y as $t \to \infty$. If this behavior depends on the initial value of y at t = 0, describe this dependency.

[5] 8a.) Transform $x'' - 2x' - 3x = e^t$ into a system of first order differential equations.

Answer 8a.)

[5] 8b.) Use Euler's formula to write e^{4-2i} in the form of a + ib.

Answer 8b.)

9.) Circle T for true and F for false.

[2] 9a.) Given an initial value, there always exists a unique solution to any second order differential equation.

[2] 9b.) Given an initial value, there always exists at least one solution to any second order differential equation.

 \mathbf{F}

F

F

Т

Т

Т

[2] 9c.) If there is no damping and no external force, then the general solution to a mechanical vibration problem with constant spring force must be of the form $c_1 cos(\omega_0 t) + c_2 sin(\omega_0 t)$ T F

[1] 9d.) $y = c_1 e^{3t} + c_2 t e^{3t} + 4 cost$ is a possible general solution to a mechanical vibration problem with damping.

[4 or 1-EC] 9e.) Explain your answer to problem 9d.

[10] 10a.) A mass weighing 2 kg stretches a spring .1m. If the mass is pulled down an additional .2m and released, and if there is no damping, determine the position of the mass at any time t

Answer 10a.)

[1-EC] 10b.) Do the initial conditions affect the long-term behavior of the motion of the mass?

[10] 11.) Suppose that a sum S_0 is invested at an annual rate of return r compounded continuously. Find the time T required for the original sum to double in value as a function of r. Assume that the rate of change of the value of the investment is equal to the interest rate r times the current value of the investment S(t).