Math 34 Differential Equations Exam #1 October 9, 2003

SHOW ALL WORK

Solve the following differential equations

[15] 1a.)
$$t^2y' + 2ty = t \sin(t)$$
.

[15] 1b.) y'' - 4y' + 4y = 0, y(0) = 2, y'(0) = 3.

Answer 1b.) _____

[15] 1c.) y'' - 4y' + 4y = 5t + 1.

[15] 1d.) $2y'' - 3y^2 = 0$, y(0) = 1, y'(0) = 1..

Answer 1d.) _____

[5] 2.) Use Euler's formula to write e^{2+3i} is the form of a+ib.

[5] 3.) Draw the direction field for y' = y.

- 4.) Circle T for true and F for false.
- [3] 4a.) Suppose ψ_1 and ψ_2 are solutions to the linear equation, ay'' + by' + cy = g(t), then $\psi_1 + \psi_2$ must also be a solution to ay'' + by' + cy = g(t).

T F

[3] 4b.) Suppose ψ_1 and ψ_2 are solutions to the equation, $ay'' + by' + cy^2 = 0$, then $\psi_1 + \psi_2$ must also be a solution to $ay'' + by' + cy^2 = 0$.

T F

[3] 4c.) Suppose ψ_1 is a solution to the linear equation, ay'' + by' + cy = g(t), and ψ_2 is a solution to the linear equation, ay'' + by' + cy = f(t), then $5\psi_1 + 3\psi_2$ must also be a solution to ay'' + by' + cy = 5g(t) + 3f(t).

T F

[3] 4d.) If p, q, and g are continuous, then there exists a unique solution to $y'' + p(t)y' + q(t)y = g(t), y(t_0) = y_0, y(t_1) = y_1.$

T F

[3] 4e.) If p, q, and g are continuous, then there exists a unique solution to y'' + p(t)y' + q(t)y = g(t), $y(t_0) = y_0$, $y'(t_0) = y'_0$.

T F

[3] 4f.) Given an initial value, there always exists a unique solution to any first order differential equation.

T F

- 5.) Choose one of the two following problems. Clearly indicate which problem you have chosen.
- 5A.) Suppose the equation $\frac{dp}{dt} = \gamma p$ describes the population of field mice. If the population of field mice doubles in 10 years, how long will it take the population to quadruple.
- 5B.) Find the escape velocity for a body projected upward with an initial velocity v_0 from a point 3R above the surface of the earth, where R is the radius of the earth. Neglect air resistance. Recall that the equation of motion is $m\frac{dv}{dt} = -\frac{mgR^2}{(R+x)^2}$ where x is the distance from the earth's surface.