\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.8truein \def\u{\vskip -10pt} \def\v{\vskip -6pt} \def\s{\vskip -1pt} 6.5: Impulse functions Unit impulse function = Dirac delta function is a generalized function with the properties \vskip 5 pt \centerline{$\delta(t) = 0, ~~~~t \not= 0$} \vskip 8 pt \centerline{$\int_{-\infty}^\infty \delta (t) dt = 1$} Let $d_\tau (t) = \cases{{1 \over 2 \tau} & $ -\tau < t < \tau $ \cr 0 & $t \leq -\tau$ or $t \geq \tau$}$ Note $lim_{\tau \rightarrow 0} d_\tau (t) = 0$ if $t \not= 0$ and $lim_{\tau \rightarrow 0}\int_{-\infty}^\infty d_\tau (t) = lim_{\tau \rightarrow 0}= 1 = \int_{-\infty}^\infty \delta (t) dt$ ${\cal L}(\delta(t - t_0)) = lim_{\tau \rightarrow 0}{\cal L}(d_\tau(t - t_0))$ $~~~~~~~~~~~~~~~~= lim_{\tau \rightarrow 0}\int_0^\infty e^{-st}d_\tau(t - t_0)dt$ $~~~~~~~~~~~~~~~~= lim_{\tau \rightarrow 0}{1 \over 2 \tau} \int_{t_0 - \tau}^{t_0 + \tau} e^{-st}dt$ $~~~~~~~~~~~~~~~~= lim_{\tau \rightarrow 0}{-1 \over 2s \tau} e^{-st} |_{t_0 - \tau}^{t_0 + \tau} $ $~~~~~~~~~~~~~~~~= lim_{\tau \rightarrow 0}{1 \over 2s \tau} e^{-st_0} ( e^{s\tau} - e^{-s\tau}) $ $~~~~~~~~~~~~~~~~= lim_{\tau \rightarrow 0}{sinh s \tau \over s \tau} e^{-st_0 } $ $= lim_{\tau \rightarrow 0}{ s cosh s \tau \over s } e^{-st_0 } $ $~~~~~~~~~~~~~~~~= e^{-st_0 } $ \end 6.6: The Convolution Integral Defn: The convolution of $f$ and $g$ is the function $f * g$ defined by \vskip 5pt \centerline{$(f * g)(t) = \int_0^t f(t - s)g(s)ds = \int_0^t f(x)g(t - x)dx $} Note $*$ is 1.) commutative: $f * g = g * f$ 2.) associative: $(f*g)*h = f*(g*h)$ 3.) distributive w.r.t $+$: $f*(g_1 + g_2) = f*g_1 + f* g_2$ 4.) $f*0 = 0*f = 0$ Example: $cos(t) * 1 =$ \vskip 30pt Example: $sin(t) * sin(t) \not\geq 0$ \eject Thm: ${\cal L}((f*g)(t)) = {\cal L}(f(t)){\cal L}(g(t))$ \vskip -5pt Proof: \vskip -5pt ${\cal L}(f(t)){\cal L}(g(t)) = \int_0^\infty e^{-sy}f(y)dy \int_0^\infty e^{-sx}g(x)dx$ \s $= \int_0^\infty [\int_0^\infty e^{-sy}f(y)dy] e^{-sx}g(x) dx$ \s $= \int_0^\infty [\int_0^\infty e^{-sy}f(y) e^{-sx}g(x) dy] dx$ \s $= \int_0^\infty [\int_0^\infty e^{-s(y + x)}f(y) g(x) dy] dx$ \s $= \int_0^\infty [\int_0^\infty e^{-s(y + x)}f(y) g(x) dx] dy$ \s Let $t = x + y$, $dt = dx$ \s $= \int_0^\infty [\int_y^\infty e^{-s(y + t - y)}f(y) g(t-y) dt] dy$ \s $= \int_0^\infty [\int_y^\infty e^{-st}f(y) g(t-y) dt] dy$ \s $= \int_0^\infty [\int_0^t e^{-st}f(y) g(t-y) dy] dt$ \s $= \int_0^\infty e^{-st} [\int_0^t f(y) g(t-y) dy] dt$ \s $= \int_0^\infty e^{-st} (f*g)(t) dt$ \s $= {\cal L}(f*g)$ Example: ${\cal L}^{-1}({1 \over s (s - a)}) = $ \end