\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip -6pt} Assignment 16 (due 4.1) 6.2: 19, 20, 22, 23; 6.3: 5, 8, 10; {6.3: 9, 13, 15, 24, 25, 28, 29}; 6.4 ? Find the inverse LaPlace transform of ${5s + 21 \over s^2 + 3s + 4}$ Look at the denominator first to determine if you should factor and use partial fractions $s^2 + 3s + 4$: $b^2 - 4ac = 3^2 - 4(1)(4) = 9 - 16 < 0$ Hence $s^2 + 3s + 4$ does not factor over the reals. Hence to avoid complex numbers, we won't factor it. $s^2 + 3s + 4$ is not an $s^2 - a^2$ or an $s^2 + a^2$, so it must be an $(s-a)^2 + b^2$. Hence we will complete the square: $s^2 + 3s + \underline{\hskip 0.2in} - \underline{\hskip 0.2in} + 4 = (s + \underline{\hskip 0.2in})^2- \underline{\hskip 0.2in} + 4$ Hence ${5s + 21 \over s^2 + 3s + 4}$ = ${5s + 21 \over (s + {3 \over 2})^2 + {7 \over 4}}$ \eject Must now consider the numerator. We need it to look like $s - a = s + {3 \over 2}$ or $b = \sqrt{7 \over 4}$ in order to use ${\cal L}^{-1}({s-a\over (s -a)^2 + b^2}) = e^{at} cos bt$ \hfil \break and/or ${\cal L}^{-1}({b \over (s -a)^2 + b^2}) = e^{at} sin bt$ $5s + 21 = 5(s + {3 \over 2}) - {15 \over 2} + 21 = 5(s + {3 \over 2}) - {27 \over 2}$ $ = 5(s + {3 \over 2}) - [{27 \over 2}\sqrt{4 \over 7}] \sqrt{7 \over 4} = 5(s + {3 \over 2}) - [{27 \over \sqrt{7}}] \sqrt{7 \over 4} $ Hence ${5s + 21 \over s^2 + 3s + 4}$ = ${5(s + {3 \over 2}) - [{27 \over\sqrt{7}}] \sqrt{7 \over 4} \over (s + {3 \over 2})^2 + {7 \over 4}}$ \hskip 0.95in= $5[{s + {3 \over 2} \over (s + {3 \over 2})^2 + {7 \over 4}}] - {27 \over\sqrt{7}}[{\sqrt{7 \over 4} \over (s + {3 \over 2})^2 + {7 \over 4}}]$ Thus ${\cal L}^{-1}({5s + 21 \over s^2 + 3s + 4}) = 5e^{-{3 \over 2}t} cos \sqrt{7 \over 4}t - {27 \over\sqrt{7}}e^{-{3 \over 2}t} sin \sqrt{7 \over 4}t 6.3: Step functions. $u_c(t) = \cases{0 & $t < c$ \cr 1 & $t \geq c$}$ 1.) Graph $u_c(t)$: \eject 2.) Given $f$, graph $u_c(t) f(t-c)$: \vskip 0.8in 3.) Calculate ${\cal L}(u_c(t) f(t-c))$ in terms of ${\cal L}(f(t))$: \vfill Example: Find the LaPlace transform of 1.) \centerline{$g(t) = \cases{0 & $t < 3$ \cr e^{t-3} & $t \geq 3$}$} 2.) \centerline{$f(t) = \cases{0 & $t < 3$ \cr 5 & $3 \leq t < 4$ \cr t - 5 & $t \geq 4$}$} Example: Find the inverse Laplace transform of ${e^{-8s} \over s^3 } 4.) Calculate ${\cal L}(e^{ct} f(t))$ in terms of $F(s) = {\cal L}(f(t))$ \vfill Example: Use formula 6 (p. 304) to find the inverse LaPlace transform of ${s - c \over (s-c)^2 + a^2}$. \eject \end