\magnification 2200 \parindent 0pt \parskip 13pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip 3pt} \def\w{\vskip 13pt} 3.8: Mechanical and Electrical Vibrations Trig background: $cos (y \mp x) = cos(x \mp y) = cos(x) cos(y) \pm sin(x)sin(y)$ Let $A = Rcos(\delta)$, $B = Rsin(\delta)$ in $Acos(\omega_0t) + B sin(\omega_0t)$ \u = $Rcos(\delta)cos(\omega_0t) + Rsin(\delta) sin(\omega_0t)$ \u = $Rcos(\omega_0t - \delta)$ Amplitude = $R$ \u frequency = $\omega_0$ (measured in radians per unit time). \u period = ${2\pi \over \omega_0}$ \u phase (displacement) = $\delta$ \eject Mechanical Vibrations: \centerline{$mu''(t) + \gamma u'(t) + ku(t) = F_{external}, ~~m, \gamma, k \geq 0$} \centerline{ $mg - kL = 0$, ~~~~~$F_{viscous}(t) = \gamma u'(t)$} $m$= mass, \u $k$ = spring force proportionality constant, \u $\gamma$ = damping force proportionality constant \u g = 9.8 m/sec \vskip 15 pt Electrical Vibrations: \vskip 4pt \centerline{$L{dI(t) \over dt} + RI(t) + {1 \over C}Q(t) = E(t), ~~L, R, C \geq 0 {\hbox{ and }} I = {dQ \over dt}$~~~~~~} $L$ = inductance (henrys), \u $R$ = resistance (ohms) \u $C$ = capacitance (farads) \u $Q(t)$ = charge at time $t$ (coulombs) \u $I(t)$ = current at time $t$ (amperes) \u $E(t)$ = impressed voltage (volts). 1 volt = 1 ohm $\cdot$ 1 ampere = 1 coulomb / 1 farad = 1 henry $\cdot$ 1 amperes/ 1 second \eject \centerline{$mu''(t) + \gamma u'(t) + ku(t) = F_{external}, ~~m, \gamma, k \geq 0$} $r_1, r_2 = {-\gamma \pm \sqrt{\gamma^2 - 4km} \over 2m}$ $\gamma^2 - 4km > 0$: $u(t) = Ae^{r_1t} + Be^{r_2t} + \psi(t) $ \w $\gamma^2 - 4km = 0$: $u(t) = (A + Bt)e^{r_1t}+ \psi(t) $ \w $\gamma^2 - 4km < 0$: $u(t) = e^{-{\gamma t \over 2m}}(A cos \mu t + B sin \mu t)+ \psi(t) $ \rightline{$= e^{-{\gamma t \over 2m}}R cos( \mu t - \delta)+ \psi(t) $~~~~~~~} \rightline{where $A = Rcos(\delta)$, $B = Rsin(\delta)$} $\mu$ = quasi frequency, ${2 \pi \over \mu}$ = quasi period \w\w\vfill Note if $\gamma = 0$, then Critical damping: $\gamma = 2\sqrt{km}$ Overdamped: $\gamma > 2\sqrt{km}$ \eject Suppose a mass weighs 64 lbs stretches a spring 4 ft. If there is no damping and the spring is stretched an additional foot and set in motion with an upward velocity of $\sqrt{8}$ ft/sec, find the equation of motion of the mass. \v $Weight = mg$: $m = {weight \over g} = {64 \over 32} = 2$ \v $mg - kL = 0$ implies $k = {mg \over L} = {64 \over 4} = 16$ \v $mu''(t) + \gamma u'(t) + ku(t) = F_{external}$ \v [$\gamma^2 - 4km < 0$: $u(t) = e^{-{\gamma t \over 2m}}(A cos \mu t + B sin \mu t)$ \break Hence $u(t)= A cos \mu t + B sin \mu t $ since $\gamma = 0$]. \v $2u''(t) + 16u(t) = 0$ \v $u''(t) + 8u(t) = 0$ \v $u(0) = 1$, $u'(0) = -\sqrt{8}$ \v $r^2 + 8 = 0 \rightarrow$ $r^2 = -8 \rightarrow$ $r = \sqrt{-8} =i\sqrt{8} =0 + i\sqrt{8}$ \end \v $u(t) = e^{-{\gamma t \over 2m}}(A cos \mu t + B sin \mu t) $ \v $u(t) = A cos \sqrt{8} t + B sin \sqrt{8} t $ \v $u(0) = 1$: $1 = Acos(0) + B sin(0) = A$ \v $u'(t) = -\sqrt{8}A sin \sqrt{8} t + \sqrt{8}B cos \sqrt{8} t $ \v $u'(0) = -\sqrt{8}:$ $-\sqrt{8} =-\sqrt{8}A sin (0) + \sqrt{8}B cos (0) $ \v $B = -1 $ \v $u(t) = cos \sqrt{8} t - sin \sqrt{8} t $ \end