Thm: Suppose $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0,
$$

If ψ is a solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)\left[^{*}\right],
$$

Then $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to [*].
Moreover if γ is also a solution to [*], then there exist constants c_{1}, c_{2} such that

$$
\gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)
$$

Or in other words, $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to [*].

Proof: Let $h=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$. Since h is a solution to the differential equation, $a y^{\prime \prime}+b y^{\prime}+c y=0$,

We will now show that $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)=\psi+h$ is also a solution to [*].

Since ψ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

Since γ a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

We will first show that $\gamma-\psi$ is a solution to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Thm: Suppose that f_{1} is a a solution to $a y^{\prime \prime}+b y^{\prime}+$ $c y=g_{1}(t)$ and f_{2} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=$ $g_{2}(t)$, then $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=$ $g_{1}(t)+g_{2}(t)$

Proof:
Since f_{1} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$,

Since f_{2} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$,

We will now show that $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+$ $b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$.

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

Examples:
Find a suitable form for ψ for the following differential equations:
1.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{2 t}$
2.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)$
3.) $y^{\prime \prime}-4 y^{\prime}-5 y=t^{2}-2 t+1$
4.) $y^{\prime \prime}-5 y=4 \sin (3 t)$
5.) $y^{\prime \prime}-4 y^{\prime}=t^{2}-2 t+1$
6.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) e^{2 t}$
7.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t) e^{2 t}$
8.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) \sin (3 t) e^{2 t}$
9.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+4 \sin (3 t) e^{2 t}$
10.) $y^{\prime \prime}-4 y^{\prime}-5 y$ $=4 \sin (3 t) e^{2 t}+4\left(t^{2}-2 t-1\right) e^{2 t}+t^{2}-2 t-1$
11.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+5 \cos (3 t)$
12.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{-t}$

To solve $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)+\ldots g_{n}(t)\left[{ }^{* *}\right]$
1.) Find the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$:

$$
c_{1} \phi_{1}+c_{2} \phi_{2}
$$

2.) For each g_{i}, find a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$: ψ_{i}

This includes plugging guessed solution into $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$ to find constant(s).

The general solution to $\left[{ }^{* *}\right]$ is

$$
c_{1} \phi_{1}+c_{2} \phi_{2}+\psi_{1}+\psi_{2}+\ldots \psi_{n}
$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}).

