Thm: Suppose $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to

$$ay'' + by' + cy = 0,$$

If ψ is a solution to

$$ay'' + by' + cy = g(t)$$
 [*],

Then $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*].

Moreover if γ is also a solution to [*], then there exist constants c_1, c_2 such that

$$\gamma = \psi + c_1 \phi_1(t) + c_2 \phi_2(t)$$

Or in other words, $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to [*].

Proof: Let $h = c_1\phi_1(t) + c_2\phi_2(t)$. Since h is a solution to the differential equation, ay'' + by' + cy = 0,

Since ψ is a solution to ay'' + by' + cy = g(t),

We will now show that $\psi + c_1 \phi_1(t) + c_2 \phi_2(t) = \psi + h$ is also a solution to [*].

Since γ a solution to ay'' + by' + cy = g(t),

We will first show that $\gamma - \psi$ is a solution to the differential equation ay'' + by' + cy = 0.

Since $\gamma - \psi$ is a solution to ay'' + by' + cy = 0 and

$$c_1\phi_1(t) + c_2\phi_2(t)$$
 is a general solution to $ay'' + by' + cy = 0$,

there exist constants c_1, c_2 such that

$$\gamma - \psi =$$

Thus $\gamma = \psi + c_1 \phi_1(t) + c_2 \phi_2(t)$.

Thm: Suppose that f_1 is a solution to $ay'' + by' + cy = g_1(t)$ and f_2 is a solution to $ay'' + by' + cy = g_2(t)$, then $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$

Proof:

Since f_1 is a solution to $ay'' + by' + cy = g_1(t)$,

Since f_2 is a solution to $ay'' + by' + cy = g_2(t)$,

We will now show that $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$.

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

Examples:

Find a suitable form for ψ for the following differential equations:

1.)
$$y'' - 4y' - 5y = 4e^{2t}$$

2.)
$$y'' - 4y' - 5y = 4\sin(3t)$$

3.)
$$y'' - 4y' - 5y = t^2 - 2t + 1$$

4.)
$$y'' - 5y = 4\sin(3t)$$

5.)
$$y'' - 4y' = t^2 - 2t + 1$$

6.)
$$y'' - 4y' - 5y = 4(t^2 - 2t - 1)e^{2t}$$

7.)
$$y'' - 4y' - 5y = 4\sin(3t)e^{2t}$$

8.)
$$y'' - 4y' - 5y = 4(t^2 - 2t - 1)sin(3t)e^{2t}$$

9.)
$$y'' - 4y' - 5y = 4\sin(3t) + 4\sin(3t)e^{2t}$$

10.)
$$y'' - 4y' - 5y$$

= $4sin(3t)e^{2t} + 4(t^2 - 2t - 1)e^{2t} + t^2 - 2t - 1$

11.)
$$y'' - 4y' - 5y = 4\sin(3t) + 5\cos(3t)$$

12.)
$$y'' - 4y' - 5y = 4e^{-t}$$

To solve $ay'' + by' + cy = g_1(t) + g_2(t) + ...g_n(t)$ [**]

- 1.) Find the general solution to ay'' + by' + cy = 0: $c_1\phi_1 + c_2\phi_2$
- 2.) For each g_i , find a solution to $ay'' + by' + cy = g_i$: ψ_i

This includes plugging guessed solution into $ay'' + by' + cy = g_i$ to find constant(s).

The general solution to [**] is

$$c_1\phi_1 + c_2\phi_2 + \psi_1 + \psi_2 + ...\psi_n$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).