Calulus pre-requisites you must know.
Derivative $=$ slope of tangent line $=$ rate.
Integral $=$ area between curve and x -axis (where area can be negative).

The Fundamental Theorem of Calculus: Suppose f continuous on $[a, b]$.
1.) If $G(x)=\int_{a}^{x} f(t) d t$, then $G^{\prime}(x)=f(x)$.

$$
\text { I.e., } \frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

2.) $\int_{a}^{b} f(t) d t=F(b)-F(a)$ where F is any antiderivative of f, that is $F^{\prime}=f$.

Suppose f is cont. on (a, b) and the point $t_{0} \in(a, b)$, Solve IVP: $\frac{d y}{d t}=f(t), y\left(t_{0}\right)=y_{0}$

$$
\begin{aligned}
d y & =f(t) d t \\
\int d y & =\int f(t) d t
\end{aligned}
$$

$y=F(t)+C$ where F is any anti-derivative of F.
Initial Value Problem (IVP): $y\left(t_{0}\right)=y_{0}$

$$
y_{0}=F\left(t_{0}\right)+C \text { implies } C=y_{0}-F\left(t_{0}\right)
$$

Hence unique solution (if domain connected) to IVP:

CH 2: Solve $\frac{d y}{d t}=f(t, y)$

*******Existence/Uniqueness of solution ${ }^{* * * * * * *}$
Thm 2.4.2: Suppose $z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are continuous on $(a, b) \times(c, d)$ and the point $\left(t_{0}, y_{0}\right) \in$ $(a, b) \times(c, d)$, then there exists an interval $\left(t_{0}-h, t_{0}+\right.$ $h) \subset(a, b)$ such that there exists a unique function $y=\phi(t)$ defined on $\left(t_{0}-h, t_{0}+h\right)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

Thm 2.4.1: If p and g are continuous on (a, b) and the point $t_{0} \in(a, b)$, then there exists a unique function $y=\phi(t)$ defined on (a, b) that satisfies the following initial value problem:

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0} .
$$

But in general, $y^{\prime}=f(t, y)$, solution may or may not exist.

Ex: $\left(y^{\prime}\right)^{2}=-1$
IVP ex: $\frac{d y}{d x}=y\left(1+\frac{1}{x}\right), y(0)=1$
$\int \frac{d y}{y}=\int\left(1+\frac{1}{x}\right) d x$
$\ln |y|=x+\ln |x|+C$
$|y|=e^{x+\ln |x|+C}=e^{x} e^{\ln |x|} e^{C}=C|x| e^{x}=C x e^{x}$
$y= \pm C x e^{x}$ implies $y=C x e^{x}$
$y(0)=1: \quad 1=C(0) e^{0}=0$ implies

$$
\text { IVP } \frac{d y}{d x}=y\left(1+\frac{1}{x}\right), y(0)=1 \text { has no solution. }
$$

See direction field created using
www.math.rutgers.edu/ ~ sontag/JODE/JOdeApplet.htr
$* * * * * * * * * * * * * * * \mathrm{Uniqueness} \mathrm{of} \mathrm{solution} * * * * * * * * * * * * * * * \mid$
Given an initial value problem,
Ch 5) $y^{\prime}=f(t), y\left(t_{0}\right)=y_{0}$: if f continuous, then on appropriate domain, unique solution $y=F(t)+y_{0}-$ $F\left(t_{0}\right)$.
8.2) linear: $y^{\prime}+p(x) y=g(x)$, then on appropriate domain, unique solution if p and g are continuous .

Ch 8): $y^{\prime}=f(t, y)$, solution may or may not be unique.

Ex: $y^{\prime}=y^{\frac{1}{3}}$
Note $y=0$ is a solution to $y^{\prime}=y^{\frac{1}{3}}$ since $y^{\prime}=0=$ $0^{\frac{1}{3}}=y^{\frac{1}{3}}$

Suppose $y \neq 0$. Then $\frac{d y}{d x}=y^{\frac{1}{3}}$ implies $y^{-\frac{1}{3}} d y=d x$
$\int y^{-\frac{1}{3}} d y=\int d x$ implies $\frac{3}{2} y^{\frac{2}{3}}=x+C$
$y^{\frac{2}{3}}=\frac{2}{3} x+C$ implies $y= \pm \sqrt{\left(\frac{2}{3} x+C\right)^{3}}$
Suppose $y(3)=0$. Then $0=\sqrt{(2+C)^{3}}$ implies $C=$ -2 .

Thus initial value problem, $y^{\prime}=y^{\frac{1}{3}}, y(3)=0$, has 3 sol'ns:

$$
y=0, \quad y=\sqrt{\left(\frac{2}{3} x-2\right)^{3}}, \quad y=-\sqrt{\left(\frac{2}{3} x-2\right)^{3}}
$$

Section 2.5: Solve $\frac{d y}{d t}=f(y)$
If given either differential equation $y^{\prime}=f(y)$ OR direction field:

Find equilibrium solutions and determine if stable, unstable, semi-stable.

Understand what the above means.
2.4 \#27b. Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n}
$$

when $n>1$ by changing it

$$
y^{n} y^{\prime}+p(t) y^{1-n}=g(t)
$$

when $n>1$ by changing it to a linear equation by substituting $v=y^{1-n}$

Solve $t y^{\prime}+2 t^{-2} y=2 t^{-2} y^{5}$

