Calulus pre-requisites you must know.

Derivative = slope of tangent line = rate.

Integral = area between curve and x-axis (where area can be negative).

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b].

1.) If
$$G(x) = \int_a^x f(t)dt$$
, then $G'(x) = f(x)$.
I.e., $\frac{d}{dx} [\int_a^x f(t)dt] = f(x)$.

2.) $\int_{a}^{b} f(t)dt = F(b) - F(a)$ where F is any antiderivative of f, that is F' = f.

Suppose f is cont. on (a, b) and the point $t_0 \in (a, b)$, Solve IVP: $\frac{dy}{dt} = f(t), y(t_0) = y_0$

$$dy = f(t)dt$$
$$\int dy = \int f(t)dt$$

y = F(t) + C where F is any anti-derivative of F.

Initial Value Problem (IVP): $y(t_0) = y_0$

$$y_0 = F(t_0) + C$$
 implies $C = y_0 - F(t_0)$

Hence unique solution (if domain connected) to IVP: $y = F(t) + y_0 - F(t_0)$

CH 2: Solve $\frac{dy}{dt} = f(t, y)$

******Existence/Uniqueness of solution*****

Thm 2.4.2: Suppose the functions z = f(t, y) and $z = \frac{\partial f}{\partial y}(t, y)$ are cont. on $(a, b) \times (c, d)$ and the point $(t_0, y_0) \in (a, b) \times (c, d)$, then there exists an interval $(t_0 - h, t_0 + h) \subset (a, b)$ such that there exists a unique function $y = \phi(t)$ defined on $(t_0 - h, t_0 + h)$ that satisfies the following initial value problem:

$$y' = f(t, y), \quad y(t_0) = y_0,$$

Thm 2.4.1: If p and g are continuous on (a, b) and the point $t_0 \in (a, b)$, then there exists a unique function $y = \phi(t)$ defined on (a, b) that satisfies the following initial value problem:

$$y' + p(t)y = g(t), y(t_0) = y_0.$$

But in general, y' = f(t, y), solution may or may not exist and solution may or may not be unique.

Ex 1: y' = y' + 1Ex 2: $(y')^2 = -1$ IVP ex 3: $\frac{dy}{dx} = y(1 + \frac{1}{x}), y(0) = 1$ $\int \frac{dy}{y} = \int (1 + \frac{1}{x})dx$ implies ln|y| = x + ln|x| + C $|y| = e^{x+ln|x|+C} = e^x e^{ln|x|} e^C = C|x|e^x = Cxe^x$ $y = \pm Cxe^x$ implies $y = Cxe^x$ y(0) = 1: $1 = C(0)e^0 = 0$ implies IVP $\frac{dy}{dx} = y(1 + \frac{1}{x}), y(0) = 1$ has no solution. See direction field created using $www.math.rutgers.edu/{\sim}\,sontag/JODE/JOdeApplet.html$ **Ex Non-unique**: $y' = y^{\frac{1}{3}}$ y = 0 is a solution to $y' = y^{\frac{1}{3}}$ since $y' = 0 = 0^{\frac{1}{3}} = y^{\frac{1}{3}}$ Suppose $y \neq 0$. Then $\frac{dy}{dx} = y^{\frac{1}{3}}$ implies $y^{-\frac{1}{3}}dy = dx$ $\int y^{-\frac{1}{3}} dy = \int dx$ implies $\frac{3}{2}y^{\frac{2}{3}} = x + C$ $y^{\frac{2}{3}} = \frac{2}{3}x + C$ implies $y = \pm \sqrt{(\frac{2}{3}x + C)^3}$ Suppose y(3) = 0. Then $0 = \sqrt{(2+C)^3}$ implies C = -2. Thus initial value problem, $y' = y^{\frac{1}{3}}$, y(3) = 0, has 3 sol'ns:

$$y = 0, \quad y = \sqrt{\left(\frac{2}{3}x - 2\right)^3}, \quad y = -\sqrt{\left(\frac{2}{3}x - 2\right)^3}$$

2.4 # 27b. Solve Bernoulli's equation,

$$y' + p(t)y = g(t)y^n,$$

when $n \neq 0, 1$ by changing it

$$y^{-n}y' + p(t)y^{1-n} = g(t)$$

when $n \neq 0, 1$ by changing it to a linear equation by substituting $v = y^{1-n}$

Solve $ty' + 2t^{-2}y = 2t^{-2}y^5$

Section 2.5: Solve $\frac{dy}{dt} = f(y)$

If given either differential equation y' = f(y) OR direction field:

Find equilibrium solutions and determine if stable, unstable, semi-stable.

Understand what the above means.