\magnification 2200 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7truein \vsize 9.2truein \def\u{\vskip -10pt} \def\v{\vskip -6pt} Thm 2.4.2: Suppose $f, {\partial f \over \partial y}: (a, b) \times (c, d)$ are continuous on $(a, b) \times (c, d)$ and the point $(t_0, y_0) \in (a, b) \times (c, d)$, then there exists an interval $(t_0 - h, t_0 + h) \subset (a, b) such that here exists a unique function $y = \phi(t)$ that satisfies the following initial value problem: $$y' = f(t, y), $$y(t_0) = y_0.$$ Thm 2.4.1: If $p$ and $g$ are continuous on $(a, b)$ and the point $t_0 \in (a, b)$, then there exists a unique function $y = \phi(t)$ that satisfies the following initial value problem: $$y' + p(t)y = g(t), y(t_0) = y_0.$$ \vskip 10pt \hrule 2.4 \#27b. Solve Bernoulli's equation, $$y' + p(t)y = g(t)y^n,$$ when $n > 1$ by changing it to a linear equation ny substituting $v = y^{1-n}$ \vskip 10pt \hrule Solve $$ty' + 2t^{-2}y = 2t^{-2}y^5,$$ \end