2.4 Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n},
$$

when $n \neq 0,1$ by changing it

$$
y^{-n} y^{\prime}+p(t) y^{1-n}=g(t)
$$

when $n \neq 0,1$ by changing it to a linear equation by substituting $v=y^{1-n}$

Solve $t y^{\prime}+2 t^{-2} y=2 t^{-2} y^{5}$
$t y^{-5} y^{\prime}+2 t^{-2} y^{-4}=2 t^{-2}$
Let $v=y^{-4}$. Thus $v^{\prime}=-4 y^{-5} y^{\prime}$
$-4 t y^{-5} y^{\prime}-8 t^{-2} y^{-4}=-8 t^{-2}$
$t v^{\prime}-8 t^{-2} v=-8 t^{-2}$
Make coefficient of $v^{\prime}=1$
$v^{\prime}-8 t^{-3} v=-8 t^{-3}$
An antiderivative of $-8 t^{-3}$ is $4 t^{-2}$
Multiply equation by $e^{4 t^{-2}}$
$e^{4 t^{-2}} v^{\prime}-8 t^{-3} e^{4 t^{-2}} v=-8 t^{-3} e^{4 t^{-2}}$
$\left(e^{4 t^{-2}} v\right)^{\prime}=-8 t^{-3} e^{4 t^{-2}}$ by PRODUCT rule.
$\int\left(e^{4 t^{-2}} v\right)^{\prime} d t=-8 \int t^{-3} e^{4 t^{-2}} d t$
$e^{4 t^{-2}} v=-8 \int t^{-3} e^{4 t^{-2}} d t$.
Let $u=4 t^{-2}$. Then $d u=-8 t^{-3} d t$
$e^{4 t^{-2}} v=\int e^{u} d u=e^{u}+C$
$e^{4 t^{-2}} v=e^{4 t^{-2}}+C$
$v=1+C e^{-4 t^{-2}}$
$y^{-4}=1+C e^{-4 t^{-2}}$ implies $y= \pm\left(1+C e^{-4 t^{-2}}\right)^{-\frac{1}{4}}$
$y^{\prime}+\frac{2}{t-3} y=1$
An anti-derivative of $\frac{2}{t-3}=2 \ln (t-3)$

$$
\begin{aligned}
& e^{2 \ln (t-3)}=e^{\ln \left[(t-3)^{2}\right]}=(t-3)^{2} \\
& y^{\prime}+\frac{2}{t-3} y=1
\end{aligned}
$$

$$
(t-3)^{2} y^{\prime}+2(t-3) y=(t-3)^{2}
$$

$$
\int\left[(t-3)^{2} y\right]^{\prime}=\int(t-3)^{2}
$$

$$
(t-3)^{2} y=\frac{(t-3)^{3}}{3}+C \text { implies } y=\frac{(t-3)}{3}+C(t-3)^{-2}
$$

