2.3: Modeling with differential equations.

Ex.: F = ma = mv' $a = \operatorname{acceleration} = v' = x''$ $v = \operatorname{velocity} = x'$ $x = \operatorname{position}$ $m = \operatorname{mass}$ $mg = \operatorname{weight}$

Model 1: Falling ball near earth, neglect air resistance.

 F_g = Gravitational force = -mgIF the positive direction points up.

Note in some examples in the book, the positive direction points down $(F_g = +mg)$ while in other examples in the book, the positive direction points up $(F_g = -mg)$

mv' = -mg implies v' = -g. Thus v = -gt + C.

IVP: $v(0) = v_0$ implies $v_0 = -g(0) + C$ implies $C = v_0$. Thus $v = -gt + v_0$

 $x' = v = -gt + v_0$ implies $x = -\frac{1}{2}gt^2 + v_0t + C$.

IVP: $x(0) = x_0$ implies $x_0 = -\frac{1}{2}g(0)^2 + v_0(0) + C$ implies $C = x_0$.

Thus $x = -\frac{1}{2}gt^2 + v_0t + x_0$.

Note when ball reaches maximum height v = 0

Model 2: Falling ball near earth, include air resistance.

Let A(v) = the force due to air resistance.

$$mv' = F_g + R(v) = -mg + A(v)$$

Model 3: Far from earth.

 $F_g = -mg \frac{R^2}{(R+x)^2}$ where R = radius of the earth.

If x is small, $\frac{R^2}{(R+x)^2} \sim 1$ and thus $F_g = -mg$ when close to earth.

For large
$$x$$
, $mv' = -mg \frac{R^2}{(R+x)^2}$ where R constant.

 $\frac{dv}{dt} = -mg\frac{R^2}{(R+x)^2}$ with 3 variables: $v,\,t,\,x$

To eliminate one variable: $\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx}$

Note this trick can also be used to simplify some problems.