1.1:

Equilibrium Solution
Graphed slope field of $\frac{d v}{d t}=f(t, v)$
*** can use slope field to determine behavior of v including as $t \rightarrow \infty$.
1.2:

Solved $\frac{d y}{d t}=a\left(y-\frac{b}{a}\right)$
Solution: $y=\frac{b}{a}+c e^{a t}$
Initial Value Problem: $y(0)=y_{0}$
$t=0, y=y_{0}$, then $c=y_{0}-\frac{b}{a}$
1.3:

ODE vs PDE

order of differential eq'n: order of highest derivative example of order $n: y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right)$

Linear vs Non-linear
linear: $a_{0}(t) y^{(n)}+\ldots+a_{n}(t) y=g(t)$
Existence and Uniqueness of Solutions

CH 2: Solve $\frac{d y}{d t}=f(t, y)$
2.1: First order linear eqn: $\frac{d y}{d t}+p(t) y=g(t)$

Ex 1: $y^{\prime}=-a y+b$
Ex 2: $y^{\prime}+3 t^{2} y=t^{2}, y(0)=0$
Note: could use section 2.2 method, separation of variables to solve ex 1 and 2 .

Ex 3: $t^{2} y^{\prime}+2 t y=t \sin (t)$

