Useful facts about tangles:

- (1) Both N(a/b) and D(a/b) are 4-plats. The knot/link N(a/b) is the 4-plat S(a, -b). The knot/link D(a/b) is the 4-plat S(b, a).
- (2) $N((c_1,...,c_n)) = N((c_n,...,c_1)) = N((c_1,...,c_n-1,1))$ = $N((1,c_1-1,...,c_n))$
- (3) The tangle corresponding to $\frac{a_1}{b_1}$ is the same as the tangle corresponding to $\frac{a_2}{b_2}$ if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2}$.
- (4) The 4-plats $N(a_1/b_1)$ and $N(a_2/b_2)$, $a_i \ge 0$, are are the same if and only if $a_1 = a_2$ and $b_1b_2^{\pm 1} \cong 1 \pmod{a_1}$.

i.e.
$$b_1 = b_2 \pmod{a_1}$$
 or $b_1b_2 = 1 \pmod{a_1}$

or equivalently, $b_1 = b_2 \pmod{a_1}$ or $b_1 = b_2^{-1} \pmod{a_1}$

- (5) The mirror image of $N(\frac{a}{b})$ is $N(-\frac{a}{b})$
- (6) $N(\frac{a}{b})$ is achiral if and only if $b^2 \cong -1 \pmod{a}$ or $2b = 1 \pmod{a}$.
- (7) $N(\frac{a_1}{b_1} + \frac{a_2}{b_2}) = N(\frac{a_1b_2 + a_2b_1}{a_1b_2' + a_2'b_1})$ where $a_2'b_2 a_2b_2' = 1$ [5].
- (8) N(A+C) = N(C+A)
- $(9) \ A + C \neq C + A$
- (10) $\frac{a_1}{b_1} + \frac{a_2}{b_2} \neq \text{a rational tangle unless either } b_1 = \pm 1 \text{ or } b_2 = \pm 1.$
- $(11) \frac{a}{b} + t = \frac{a+bt}{b}$
- (12) D(A+C) = D(A)#D(C).
- (13) $N(\frac{a_1}{b_1} + ... + \frac{a_n}{b_n})$ is a Montesinos knot which is not a 4-plat unless at most two of the tangles $\frac{a_i}{b_i}$ are non-integral.
- (14) N(A + C) = 4-plat implies at least one of A or C is rational or locally knotted [8][9].
- (15) If A is a prime tangle and C is locally unknotted and not the ∞ -tangle, then A + C is a prime tangle [9][10].

The tangle, C, is locally unknotted if every 3-ball which intersects the arcs of C in exactly two points contains an unknotted spanning arc. A tangle is locally knotted if it is not locally unknotted. A tangle is prime if it is neither rational nor locally knotted.

- (16) R is a rational tangle if and only if its double branch cover is a solid torus.
- (17) M a ambient isotopic to a sum of rational tangles if and only if its double branch cover is a Seifert fiber space with orbit surface a disk and n > 0 exceptional fibers [11].
 - [5] C. Ernst, D. W. Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Camb. Phil. Soc. 108 (1990), 489–515.
 - [7] J. R. Goldman, L. H. Kauffman, *Rational tangles*, Adv. in Appl. Math. 18 (1997), no. 3, 300–332.
 - [8] S. Bleiler, Knots prime on many strings, Trans. Amer. Math. Soc. 282 (1984), no. 1, 385–401.
 - [9] W. B. R. Lickorish, *Prime knots and tangles*, Trans. Amer. Math. Soc. 267 (1981), no. 1, 321–332.
- [10] C. Ernst, D. W. Sumners, Solving tangles equations arising in a DNA recombination model, Math. Proc. Camb. Phil. Soc. 124 (1998).
- [11] C. Ernst, Tangle equations, J. Knot Theory Ramifications 5 (1996), no. 2, 145–159.