Useful facts about tangles:
(1) Both $N(a / b)$ and $D(a / b)$ are 4-plats. The knot/link $N(a / b)$ is the 4-plat $S(a,-b)$. The knot/link $D(a / b)$ is the 4-plat $S(b, a)$.
(2) $N\left(\left(c_{1}, \ldots, c_{n}\right)\right)=N\left(\left(c_{n}, \ldots, c_{1}\right)\right)=N\left(\left(c_{1}, \ldots, c_{n}-1,1\right)\right)$

$$
=N\left(\left(1, c_{1}-1, \ldots, c_{n}\right)\right)
$$

(3) The tangle corresponding to $\frac{a_{1}}{b_{1}}$ is the same as the tangle corresponding to $\frac{a_{2}}{b_{2}}$ if and only if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$.
(4) The 4-plats $N\left(a_{1} / b_{1}\right)$ and $N\left(a_{2} / b_{2}\right), a_{i} \geq 0$, are are the same if and only if $a_{1}=a_{2}$ and $b_{1} b_{2}^{ \pm 1} \cong 1\left(\bmod a_{1}\right)$.
i.e. $b_{1}=b_{2}\left(\bmod a_{1}\right)$ or $b_{1} b_{2}=1\left(\bmod a_{1}\right)$
or equivalently, $b_{1}=b_{2}\left(\bmod a_{1}\right)$ or $b_{1}=b_{2}^{-1}\left(\bmod a_{1}\right)$
(5) The mirror image of $N\left(\frac{a}{b}\right)$ is $N\left(-\frac{a}{b}\right)$
(6) $N\left(\frac{a}{b}\right)$ is achiral if and only if $b^{2} \cong-1(\bmod a)$ or $2 b=1(\bmod$ a).
(7) $N\left(\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}\right)=N\left(\frac{a_{1} b_{2}+a_{2} b_{1}}{a_{1} b_{2}^{\prime}+a_{2}^{\prime} b_{1}}\right)$ where $a_{2}^{\prime} b_{2}-a_{2} b_{2}^{\prime}=1[5]$.
(8) $N(A+C)=N(C+A)$
(9) $A+C \neq C+A$
(10) $\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}} \neq$ a rational tangle unless either $b_{1}= \pm 1$ or $b_{2}= \pm 1$.
(11) $\frac{a}{b}+t=\frac{a+b t}{b}$
(12) $D(A+C)=D(A) \# D(C)$.
(13) $N\left(\frac{a_{1}}{b_{1}}+\ldots+\frac{a_{n}}{b_{n}}\right)$ is a Montesinos knot which is not a 4-plat unless at most two of the tangles $\frac{a_{i}}{b_{i}}$ are non-integral.
(14) $\mathrm{N}(\mathrm{A}+\mathrm{C})=4$-plat implies at least one of A or C is rational or locally knotted [8][9].
(15) If A is a prime tangle and C is locally unknotted and not the ∞-tangle, then $\mathrm{A}+\mathrm{C}$ is a prime tangle [9][10].

The tangle, C, is locally unknotted if every 3-ball which intersects the arcs of C in exactly two points contains an unknotted spanning arc. A tangle is locally knotted if it is not locally unknotted. A tangle is prime if it is neither rational nor locally knotted.
(16) R is a rational tangle if and only if its double branch cover is a solid torus.
(17) M a ambient isotopic to a sum of rational tangles if and only if its double branch cover is a Seifert fiber space with orbit surface a disk and $n>0$ exceptional fibers [11].
[5] C. Ernst, D. W. Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Camb. Phil. Soc. 108 (1990), 489-515.
[7] J. R. Goldman, L. H. Kauffman, Rational tangles, Adv. in Appl. Math. 18 (1997), no. 3, 300-332.
[8] S. Bleiler, Knots prime on many strings, Trans. Amer. Math. Soc. 282 (1984), no. 1, 385-401.
[9] W. B. R. Lickorish, Prime knots and tangles, Trans. Amer. Math. Soc. 267 (1981), no. 1, 321-332.
[10] C. Ernst, D. W. Sumners, Solving tangles equations arising in a DNA recombination model, Math. Proc. Camb. Phil. Soc. 124 (1998).
[11] C. Ernst, Tangle equations, J. Knot Theory Ramifications 5 (1996), no. 2, 145-159.

