\magnification 2300 \parindent 0pt \parskip 8pt \pageno=1 \hsize 7.2truein \hoffset -0.2truein \vsize 9.5truein \def\u{\vskip -3pt} \def\v{\vskip -3pt} Solve $N(U_f + {0 \over 1} ) = N({1 \over 0})$ = unknot, \hfil \break $N(U_f + {t \over w} ) = N({0 \over 1})$ = unlink of two components. Method 1: 1.) Since $N({0 \over 1})$ is a $(2, p)$ torus link, $ N({1 \over 0})$ = unknot, and $E$ is rational, $U_f$ is rational. Suppose $U_f = {a \over b}$. Then $N(U_f + {0 \over 1} ) = N({a \over b} + {0 \over 1} ) = N({a \over b}) = N({1 \over 0})$. Hence $a = 1$ since we can take $a$ to be nonnegative (${a \over b} = { -a \over -b}$). Thus $U_f = {1 \over b}$ . $N(U_f + {t \over w} ) = N({1 \over b} + {t \over w} ) = N({w + tb \over t}) = N({0 \over 1})$ Hence $w + tb = 0$. Thus $w = -tb$. Since $gcd(w, t) = 1$ and we can take $t$ to be nonnegative, t = 1. Hence $w = -b$. Thus the solutions to the above system of tangle equations is $U_f = {1 \over b}$ and ${t \over w} = -{1 \over b}$ where $b$ is an arbitrary integer. Method 3: Use KnotPlot \eject Method 2: Solve $N(U_f + {0 \over 1} ) = N({1 \over 0}) = N({a \over b})$ = unknot, \hfil \break $N(U_f + {t \over w} ) = N({0 \over 1}) = N({z \over v})$ = 2 component unlink. $a = 1, b = 0, x = 0, y = -1, z = 0, v = 1, $ \hfil \break and $v'$ is any integer such that $v'v^{\pm 1} = 1$mod $z$ By corollary 2 if $w \not\cong \pm 1 $ mod $t$ or if $U_f$ is rational, then ${t \over w} = {xz - av' \over bv' - yz - kt} = {v' \over -kt} =$ \hfil \break and $U = {a \over b + ka} = {1 \over k}$ \hfil \break Or ${t \over w} = {bz - av' \over xv' - yz - kt} = {v' \over -kt} =$ \hfil \break and $U = {a \over x + ka} = {1 \over k}$ By Thm 3, if $w \cong \pm 1$ mod $t$, $N({z \over v}) = N({tp(pb - qa) \pm a \over tq(pb - qa) \pm b})$ Hence $ tp(pb - qa) \pm a = z $ or $-z$. \hfil \break Thus $ tp(pb - qa) = z \mp a $ or $-z \mp a$. Hence $tp | (z \mp a)$. IF $t \not= \pm 1$, then $U = ({da - jb \over pb - qa} + {j \over p}) \circ (h, 0)$ or $({j \over p} +{da - jb \over pb - qa} )\circ (h, 0)$. Hence if $|z \mp a|$ is prime, $U$ is rational. If $t = \pm 1$, then $U$ is rational by Hirasawa and Shimokawa. \eject Solve $N(U_f' + {f_1 \over g_1} ) = N({1 \over 0}) = N({a \over b})$ = unknot, \hfil \break $N(U_f' + {f_2 \over g_2} ) = N({0 \over 1}) = N({z \over v})$ = 2 component unlink. given that $U_f = -{1 \over k}$ and ${t \over w} = {1 \over k}$ are the solutions to $N(U_f + {0 \over 1} ) = N({1 \over 0}) = N({a \over b})$ = unknot, \hfil \break $N(U_f + {t \over w} ) = N({0 \over 1}) = N({z \over v})$ = 2 component unlink. Suppose ${f_1 \over g_1} = (c_1, ..., c_n)$, $f_1 = E[c_1, ..., c_n],$ $ g_1 = E[c_1, ..., c_{n-1}], e_1 = E[c_2, ..., c_n], i_1 = E[c_2, ..., c_{n-1}]$. Then ${f_2 \over g_2} = { te_1 + wf_1 \over ti_1 + wg_1} = (b_1, ..., b_k + c_1, ..., c_n)$ where ${t \over w} = (b_1, ..., b_k)$. Since ${t \over w} = {1 \over k} = (k, 0)$, \hfil \break ${f_2 \over g_2} = { e_1 + kf_1 \over i_1 + kg_1} = ( k, 0 + c_1, ..., c_n) = ( k, c_1, ..., c_n)$. $U_f' = U_f \circ( -c_1, ..., -c_n) = (-k, 0) \circ ( -c_1, ..., -c_n) = (-k, 0 + -c_1, ..., -c_n)= (-k, -c_1, ..., -c_n) $ If $U_f = {a \over b'}$, then $U_f' = U_f \circ( -c_1, ..., -c_n) = {-f_1 b' + e_1a \over g_1b' - i_1a}$. Since $U_f = {1 \over -k}$, $U_f' = {f_1k + e_1 \over g_1 k - i_1}$ Note: (1) = (0, 1, 1), but \centerline{$(3) = (2) \circ (1) \not= (2) \circ (0, 1, 1) = (2, 1, 1)$} \end