Tuesday, April 20, 2010

Handlebody of genus \(g \)

Let \(U = \)

Let \(\Sigma = \partial U \)

Heegaard decomposition: \(Y = U_1 \cup U_2 \)

\[U_1 = U_2 = \text{a handlebody of genus } g \]

Ex: \(S^3 = \)

\(S^2 \)

\(U \)

\(T^2 \)

\(U \)

\(U \)

Genus \(g \) decomposition of \(S^3 \)

Ex: \(L(p, q) = \)

\[m \rightarrow \mathbb{P}L + qM \]

1. Glue in neighborhood of meridional disk using \(m \rightarrow \mathbb{P}L + qM \).
2. Glue in remaining 3-ball.

Note: Heegaard decomposition of \(L(p, q) \) depends only on curves \(m, \mathbb{P}L + qM \).

\(L(p, q) = \)
Theorem 2.1 (Singer 1933): Let Y be an oriented closed 3-manifold.

Then Y admits a Heegaard decomposition.

Proof: Start with a triangulation of Y.

Same genus

0-handles U

1-handles

= handlebody

3-handles V

2-handles

= handlebody

dual

3-handles

0-handles:

$D^3 \times S^0$

Add to each vertex

for each edge

Glue on $D^2 \times D^1$

1-handles

2-handles

= handlebody

504 x D^3

for each face

Glue $D^1 \times D^2$

for each tetrahedron

Stabilization of $Y = U_1 \cup U_2$

U_i are genus g handlebodies.

Σ'

Drill out

unknotted arc = A

$(U_1 \setminus \text{nbhd}(A)) \cup (U_2 \cup \text{nbhd}(A))$

$\partial \Sigma'$

$q(\Sigma') = q(\Sigma) + 1$

Note: Removing a handle results in destabilization.

Let $Y = U_1 \cup U_2 = \tilde{U}_1 \cup \tilde{U}_2$

$\Sigma \leftrightarrow \text{genus } \tilde{g} \leftrightarrow \text{genus } \tilde{g}$

Then for k large enough, the $k-g$-fold stabilization of $U_1 \cup \Sigma \cup U_2$ is diffeo with $(k-g)$-fold stable of $U_1 \cup U_2$.
Note: Stabilization/destabilization is like Reidemeister moves for manifolds.

If \(f : 3\text{-manifolds} \rightarrow X \) does not change under stab/destab, then it is an invariant of 3-manifolds.

Def: A set of attaching circles \(\{Y_1, \ldots, Y_g\} \) for \(U \), a genus \(g \) handlebody, is a collection of closed embedded curves \(\partial U = \Sigma_g \).

1. \(Y_i \cap Y_j = \emptyset \text{ } \forall i \neq j \)
2. \(\Sigma_g - Y_1 - \cdots - Y_g \) is connected, i.e. \(\{1, \ldots, g\} \) are li. in \(H_1(\Sigma, \mathbb{Z}) \)
3. \(Y_i \) bound disjoint embedded disks in \(U \).

Let \((\Sigma, U_1, U_2)\) be a genus \(g \) H.D. for \(Y \). A compatible Heegaard diagram is given by \((\Sigma, \alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g)\) attaching circles for \(U_1 \) for \(U_2 \).