\magnification 2000 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 9.8truein \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} Thm 5.3: Suppose $T: \R^2 \rightarrow \R^2 \in C^1$ $T(u, v) = (T_1(u, v), T_2(u, v)) = (x(u, v), y(u, v))$ If $D^* \subset \R^2$ and if $f: T(D^*) \rightarrow \R$ is integrable, then $\int \int_{T(D^*)} f(x, y) dx dy =$ \f \rightline{$ \int \int_{D^*} f( (x(u, v), y(u, v))) abs(det(DT(u, v))) du dv$} Ex: Evaluate $\int \int_{T(D^*)} xy dx dy $ where $T(D^*)$ = the parallelogram where the vectors (4, 1) and (2, 3) form two of its sides. \vskip 60pt Find $D^*$ and $T: \R^2 \rightarrow \R^2$ such that $T(D^*)$ is the parallelogram described above. Note $T$ is a linear transformation. $T: \R^2 \rightarrow \R^2$, $T(u, v) = \left(\matrix{a & b \cr c & d}\right)$ $\left(\matrix{u\cr v}\right)$ \eject $ T(1, 0) = \left(\matrix{a & b \cr c & d}\right)$ $\left(\matrix{1\cr 0}\right) = \left(\matrix{4\cr 1}\right) $ $T(0, 1) = \left(\matrix{a & b \cr c & d}\right) \left(\matrix{0\cr 1}\right) = \left(\matrix{2\cr 3}\right) $ Hence $T: \R^2 \rightarrow \R^2$, $T(u, v) = \left(\matrix{4 & 2 \cr 1 & 3}\right)$ $ \left(\matrix{u\cr v}\right) = \left(\matrix{4u + 2v\cr u + 3v}\right)$ $ = \left(\matrix{x(u, v) \cr y(u, v) }\right)$ Let $x = 4u + 2v$ and $y = u + 3v$ $DT = \left(\matrix{4 & 2 \cr 1 & 3}\right)$ and $abs(det \left(\matrix{4 & 2 \cr 1 & 3}\right) ) = 12 - 2 = 10$ $\int \int_{T(D^*)} (xy) dx dy $ \rightline{= $ \int \int_{D^*} f( (x(u, v), y(u, v))) abs(det(DT(u, v))) du dv$} $ =\int \int_{D^*} (4u + 2v)(u + 3v)(10) du dv$ = $10 \int_0^1 \int_0^1 (4u^2 + 14uv + 6v^2) du dv$ = $10 \int_0^1 ({4 \over 3}u^3 + 7u^2v + 6uv^2|_0^1 dv$ = $10 \int_0^1 ({4 \over 3} + 7v + 6v^2) dv$ = $10 ({4 \over 3}v + {7 \over 2}v^2 + 2v^3)|_0^1 $ = $10 ({4 \over 3} + {7 \over 2} + 2) $ \end