HW (due this Friday) 1.2: 25, 26, 29, 34, 36, 38; 1.3: 8, 10, 14, 17, 20, 25, 28; 1.4: 4, 10, 12, 13, 17, 19, 25; 1.5: 3, 8, 9, 15, 20

Find an equation of the line containing the point \(p \) and is parallel to the vector \(a \)

Find an equation of the plane containing the point \(p \) and containing the vectors \(a \) and \(b \)

Find the equation of the plane containing the points \((1, 2, 3), (5, 4, 7), (0, 0, 6) \).

Normal form:

Find the equation of the plane containing the point \(p \) and orthogonal to the vector \(n \)

Find the equation of the plane containing the points \((1, 2, 3), (5, 4, 7), (0, 0, 6) \).
\(\mathbf{n} \cdot [(\mathbf{x} - \mathbf{p})] = 0 \)

\[
(n_1, n_2, n_3) \cdot [(x_1, x_2, x_3) - (p_1, p_2, p_3)] = 0
\]

\[
(n_1, n_2, n_3) \cdot (x_1 - p_1, x_2 - p_2, x_3 - p_3) = 0
\]

\[
n_1(x_1 - p_1) + n_2(x_2 - p_2) + n_3(x_3 - p_3) = 0
\]

\[
n_1x_1 + n_2x_2 + n_3x_3 = n_1p_1 + n_2p_2 + n_3p_3
\]

Equation of a plane in \(\mathbb{R}^3 \) in normal form:

\[
Ax + By + Cz = D
\]

Find the intersection of the planes \(x - 2y + 5z = 0 \) and \(3x + 4y = 0 \)

Find the distance between the point \((1, 2, 3)\) and the line \(\mathbf{x} = t(4, 2, 5) + (0, 6, 2)\)

Equation of plane in other form \(\mathbf{x} = s\mathbf{a} + t\mathbf{b} + \mathbf{p} \)