Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$.
Define $g_{j}: \mathbf{R} \rightarrow \mathbf{R}$ by $g_{i}(t)=f_{i}\left(x_{1}, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_{n}\right)$.

If g is differentiable at a_{j}, then the partial derivative of f with respect to x_{j} is defined by
$\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})=g^{\prime}\left(x_{j}\right)=\lim _{h \rightarrow 0} \frac{g\left(x_{j}+h\right)-g\left(x_{j}\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{f_{i}\left(x_{1}, \ldots, x_{j-1}, x_{j}+h, x_{j+1}, \ldots, x_{n}\right)-f_{i}\left(x_{1}, \ldots, x_{j-1}, x_{j}, x_{j+1}, \ldots, x_{n}\right)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{f_{i}\left(\mathbf{x}+h \mathbf{e}_{\mathbf{j}}\right)-f_{i}(\mathbf{x})}{h}
$$

Ex: $\frac{\partial\left(x^{2} y\right)}{\partial x}=$

$$
\frac{\partial\left(x^{2} y\right)}{\partial x}=
$$

The gradient of f is denoted by

$$
\nabla f(\mathbf{a})=\left(\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}), \ldots, \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a})\right)
$$

Ex: $\nabla x^{2} y=$

When is f differentiable (not just partially differentiable)?
Ex: $f: \mathbf{R}^{2} \rightarrow \mathbf{R}, f(x, y)= \begin{cases}0 & (\mathrm{x}, \mathrm{y})=(0,0) \\ \frac{x y}{x^{2}+y^{2}} & \text { otherwise }\end{cases}$
$\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$
$\frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$
BUT f is not continuous at $(0,0)!!!!!!!!!$
RECALL: f differentiable implies f continuous
$\mathrm{Ex}: g: \mathbf{R}^{2} \rightarrow \mathbf{R}, g(x, y)=x+2 y$
$\frac{\partial g}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h-0}{h}=1$
$\frac{\partial g}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{2 h-0}{h}=2$
We will see later that g is differentiable.

Suppose $f: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ is differentiable. Then

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a) \\
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}-f^{\prime}(a)=0 \\
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a) h}{h}=0
\end{gathered}
$$

or equivalently,

$$
\begin{gathered}
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a) \\
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}-f^{\prime}(a)=0 \\
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{(x-a)}=0 \\
\lim _{x \rightarrow a} \frac{f(x)-\left[f(a)+f^{\prime}(a)(x-a)\right]}{(x-a)}=0
\end{gathered}
$$

Thus when x is close to a, then $f(x)$ is close to $f(a)+f^{\prime}(a)[x-a]$
Thus $y=f(a)+f^{\prime}(a)[x-a]$ is the best linear approximation of f near $x=a$.

Defn: Let V and W be vector spaces. A linear transformation from V to W is a function $T: V \rightarrow W$ that satisfies the following two conditions. For each \mathbf{u} and \mathbf{v} in V and scalar a,
i.) $T(a \mathbf{u})=a T(\mathbf{u})$
ii.) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$

Thm: Let $T: V \rightarrow W$ be a linear transformation. Then $T(\mathbf{0})=\mathbf{0}$
Pf: $T(\mathbf{0})=T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})$

Thm: Let A be an $m \times n$ matrix. Then the function

$$
\begin{gathered}
T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \\
T(\mathbf{x})=A \mathbf{x}
\end{gathered}
$$

is a linear transformation.

Thm: If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear transformation, then $T(\mathbf{x})=$ $A \mathrm{x}$ where

$$
A=\left[T\left(\mathbf{e}_{\mathbf{1}}\right) \ldots T\left(\mathbf{e}_{\mathbf{n}}\right)\right]
$$

Ex: If $T: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $T(1,0)=3, T(0,1)=4$, then

$$
T(x, y)=x T(1,0)+y T(0,1)=\left(\begin{array}{ll}
3 & 4
\end{array}\right)\binom{x}{y}=3 x+4 y
$$

Defn: Suppose $f: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ is differentiable at a. Then

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a) h}{h} & =0 \\
\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{(x-a)} & =0 \\
\lim _{x \rightarrow a} \frac{f(x)-\left[f(a)+f^{\prime}(a)(x-a)\right]}{(x-a)} & =0
\end{aligned}
$$

Thus when x is close to a, then $f(x)$ is close to $f(a)+f^{\prime}(a)[x-a]$
Thus $y=f(a)+f^{\prime}(a)[x-a]$ is the best linear approximation of f near $x=a$.

Hence the tangent line to f at a is $y=f(a)+f^{\prime}(a)[x-a]$
The tangent line can be written as a constant plus a linear function.

Defn: Suppose $A \subset \mathbf{R}^{n}, f: A \rightarrow \mathbf{R}^{m}$.
f is said to be differentiable at a point a if there exists an open ball V such that $a \in V \subset A$ and a linear function T such that

$$
\begin{aligned}
& \lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-T(\mathbf{h})\|}{\|\mathbf{h}\|}=0 \\
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\|f(\mathbf{x})-f(\mathbf{a})-T(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0
\end{aligned}
$$

Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$.

$$
\begin{aligned}
& \text { Then } T=\left(\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right) \text { and } T \mathbf{x}=\left(\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)=\Sigma b_{i} x_{i} \\
& \text { Also, } T(\mathbf{x}-\mathbf{a})=\left(\begin{array}{lll}
b_{1} & b_{2} \ldots & b_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1}-a_{1} \\
x_{2}-a_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}-a_{n}
\end{array}\right)=\Sigma b_{i}\left(x_{i}-a_{i}\right) \\
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\|f(\mathbf{x})-f(\mathbf{a})-T(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0 \\
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\left\|f(\mathbf{x})-f(\mathbf{a})-\Sigma b_{i}\left(x_{i}-a_{i}\right)\right\|}{\|\mathbf{x}-\mathbf{a}\|}=0 \\
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-f(\mathbf{a})-\Sigma b_{i}\left(x_{i}-a_{i}\right)}{\|\mathbf{x}-\mathbf{a}\|}=0 \\
& y=f(\mathbf{a})+\Sigma b_{i}\left(x_{i}-a_{i}\right) \text { approximates } y=f(\mathbf{x})
\end{aligned}
$$

