\magnification 1800 \parskip 15pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\N{{\bf N}} \def\a{{\bf a}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\v{\vskip 10pt} \def\u{\vskip -8pt} \def\hb{\hfil \break} Let $f: \R^n \rightarrow \R$. Define $g_{j}: \R \rightarrow \R$ by $g_{i}(t) = f_i(x_1, ..., x_{j-1}, t, x_{j+1}, ..., x_n)$. If $g$ is differentiable at $a_j$, then the partial derivative of $f$ with respect to $x_j$ is defined by ${\partial f_i \over \partial x_j}({\bf x}) = g'(x_j) =$ $lim_{h \rightarrow 0} {g(x_j + h) - g(x_j) \over h}$ $= lim_{h \rightarrow 0} {f_i(x_1, ..., x_{j-1}, x_j + h, x_{j+1}, ..., x_n) - f_i(x_1, ..., x_{j-1}, x_j, x_{j+1}, ..., x_n) \over h}$ ~~~~~~~~~$ = lim_{h \rightarrow 0} { f_i({\bf x} + h {\bf e_j}) - f_i({\bf x}) \over h}$ \v\v\v Ex: ${\partial (x^2y) \over \partial x} = $ \hfil ${\partial (x^2y) \over \partial x} = $ \v The gradient of $f$ is denoted by \v \centerline{$\nabla f({\bf a}) = \left({\partial f_1 \over \partial x_1}({\bf a}), ..., {\partial f_1 \over \partial x_n}({\bf a})\right)$} \v Ex: $\nabla x^2y =$ \v \v %%\vskip 5pt %%\hrule %%\vskip -5pt \eject When is $f$ differentiable (not just partially differentiable)? Ex: $f: \R^2 \rightarrow \R$, $f(x, y) = \cases{ 0 & (x, y) = (0, 0) \cr {xy \over x^2 + y^2} & otherwise}$ ${\partial f \over \partial x}(0, 0) = lim_{h \rightarrow 0}{f(0 + h, 0) - f(0, 0) \over h} = lim_{h \rightarrow 0}{0 - 0 \over h} = 0$ ${\partial f \over \partial y}(0, 0) = lim_{h \rightarrow 0}{f(0, 0 + h) - f(0, 0) \over h} = lim_{h \rightarrow 0}{0 - 0 \over h} = 0$ BUT $f$ is not continuous at (0, 0)!!!!!!!!! RECALL: $f$ differentiable implies $f$ continuous \vfill \vfill \vskip 50pt \hrule \vskip -5pt Ex: $g: \R^2 \rightarrow \R$, $g(x, y) = { x + 2y }$ ${\partial g \over \partial x}(0, 0) = lim_{h \rightarrow 0}{f(0 + h, 0) - f(0, 0) \over h} = lim_{h \rightarrow 0}{h - 0 \over h} = 1$ ${\partial g \over \partial y}(0, 0) = lim_{h \rightarrow 0}{f(0, 0 + h) - f(0, 0) \over h} = lim_{h \rightarrow 0}{2h - 0 \over h} = 2$ We will see later that $g$ is differentiable. \eject Suppose $f: \R^1 \rightarrow \R^1$ is differentiable. Then {$$lim_{h \rightarrow 0}{f(a+h) - f(a) \over h} = f'(a)$$} {$$ lim_{h \rightarrow 0}{f(a+h) - f(a) \over h} - f'(a) = 0$$} $$lim_{h \rightarrow 0}{f(a+h) - f(a) - f'(a)h\over h} = 0$$ or equivalently, $$lim_{x \rightarrow a}{f(x) - f(a) \over x-a} = f'(a)$$ $$ lim_{x \rightarrow a}{f(x) - f(a) \over x-a} - f'(a) = 0$$ $$lim_{x \rightarrow a}{f(x) - f(a) - f'(a)(x-a)\over (x-a)} = 0$$ $$lim_{x \rightarrow a}{f(x) - [f(a) + f'(a)(x-a)]\over (x-a)} = 0$$ Thus when $x$ is close to $a$, then $f(x)$ is close to $f(a) + f'(a)[x-a]$ {Thus $y = f(a) + f'(a)[x-a]$ is the best linear approximation of $f$ near $x = a$.} \vfill \vfill \vfill \eject Defn: Let $V$ and $W$ be vector spaces. A {\bf linear transformation} from $V$ to $W$ is a function $T: V \rightarrow W$ that satisfies the following two conditions. For each {\bf u} and {\bf v} in $V$ and scalar $a$, i.) $T(a{\bf u}) = aT({\bf u})$ ii.) $T({\bf u + v}) = T({\bf u}) + T({\bf v})$ %%In this case, we say, $T \in {\cal L}(R^n;R^m)$. \vskip 5pt \hrule Thm: Let $T: V \rightarrow W$ be a linear transformation. Then $T({\bf 0}) = {\bf 0}$ Pf: $T({\bf 0}) = T({\bf 0} + {\bf 0}) = T({\bf 0}) + T({\bf 0})$ \vskip 5pt \hrule Thm: Let $A$ be an $m \times n$ matrix. Then the function $$\matrix{ T:\R^n \rightarrow \R^m \cr T({\bf x}) = A{\bf x}}$$ is a linear transformation. Thm: If $T: \R^n \rightarrow \R^m$ is a linear transformation, then $T({\bf x}) = A{\bf x}$ where $$A = [T({\bf e_1}) ... T({\bf e_n})]$$ Ex: If $T: \R^2 \rightarrow \R$ and $T(1, 0) = 3$, $T(0, 1) = 4$, then $$T(x, y) = xT(1, 0) + yT(0, 1) = (3 ~~4) \left( \matrix{x \cr y} \right) = 3x + 4y$$ \vfill \eject Defn: Suppose $f: \R^1 \rightarrow \R^1$ is differentiable at a. Then $$lim_{h \rightarrow 0}{f(a+h) - f(a) - f'(a)h\over h} = 0$$ $$lim_{x \rightarrow a}{f(x) - f(a) - f'(a)(x-a)\over (x-a)} = 0$$ $$lim_{x \rightarrow a}{f(x) - [f(a) + f'(a)(x-a)]\over (x-a)} = 0$$ Thus when $x$ is close to $a$, then $f(x)$ is close to $f(a) + f'(a)[x-a]$ Thus $y = f(a) + f'(a)[x-a] $ is the best linear approximation of $f$ near $x = a$. Hence the tangent line to $f$ at $a$ is $y = f(a) + f'(a)[x-a]$ The tangent line can be written as a constant plus a linear function. \vskip 5pt \hrule \vskip -5pt Defn: Suppose $A \subset \R^n$, $f: A \rightarrow \R^m$. \vskip -5pt $f$ is said to be {\bf differentiable at a point a} if there exists an open ball $V$ such that $a \in V \subset A$ and a linear function $T$ %%$\in {\cal L}(R^n; R^m)$ such that $$lim_{{\bf h} \rightarrow {\bf 0}}{||f({\bf a}+{\bf h}) - f({\bf a}) - T({\bf h})||\over ||{\bf h}||} = 0$$ $$lim_{{\bf x} \rightarrow {\bf a}}{||f({\bf x}) - f({\bf a}) - T({\bf x} - {\bf a})||\over ||{\bf x} - {\bf a}||} = 0$$ Suppose $f: \R^n \rightarrow \R$. \hfil \break Then $T = ( b_1 ~~b_2 ~... ~b_n)$ and $T{\bf x} = (b_1 ~~b_2 ~... ~ b_n) \left( \matrix{x_1 \cr x_2 \cr .\cr .\cr . \cr x_n} \right) = \Sigma b_ix_i$ Also, $T({\bf x} - \a) = (b_1 ~~b_2 ...~ b_n) \left( \matrix{x_1 - a_1 \cr x_2 - a_2 \cr . \cr . \cr . \cr x_n - a_n} \right) = \Sigma b_i(x_i - a_i)$ $$lim_{{\bf x} \rightarrow {\bf a}}{||f({\bf x}) - f({\bf a}) - T({\bf x} - {\bf a})||\over ||{\bf x} - {\bf a}||} = 0$$ $$lim_{{\bf x} \rightarrow {\bf a}}{||f({\bf x}) - f({\bf a}) - \Sigma b_i(x_i - a_i)||\over ||{\bf x} - {\bf a}||} = 0$$ $$lim_{{\bf x} \rightarrow {\bf a}}{f({\bf x}) - f({\bf a}) - \Sigma b_i(x_i - a_i) \over ||{\bf x} - {\bf a}||} = 0$$ $y = f({\bf a}) + \Sigma b_i(x_i - a_i)$ approximates $y = f({\bf x})$ \end \eject Defn: Suppose $f: \R^1 \rightarrow \R^1$ is differentiable at a. Then $$lim_{h \rightarrow 0}{f(a+h) - f(a) - f'(a)h\over h} = 0$$ $$lim_{x \rightarrow a}{f(x) - f(a) - f'(a)(x-a)\over (x-a)} = 0$$ Defn: Suppose $A \subset \R^n$, $f: A \rightarrow \R^m$. \vskip -5pt $f$ is said to be {\bf differentiable at a point a} if there exists an open ball $V$ such that $a \in V \subset A$ and a linear function $T$ %%$\in {\cal L}(R^n; R^m)$ such that $$lim_{{\bf h} \rightarrow {\bf 0}}{||f({\bf a}+{\bf h}) - f({\bf a}) - T({\bf h})||\over ||{\bf h}||} = 0$$ $$lim_{{\bf x} \rightarrow {\bf a}}{||f({\bf x}) - f({\bf a}) - T({\bf x} - {\bf a})||\over ||{\bf x} - {\bf a}||} = 0$$ Suppose $f: \R^n \rightarrow \R$. \hfil \break Then $T = ( b_1, ..., b_n)$ and $T{\bf x} = (b_1, ..., b_n) \left( \matrix{x_1 \cr x_1 \cr ... \cr x_n} \right) = \Sigma b_ix_i$ $$lim_{{\bf x} \rightarrow {\bf a}}{||f({\bf x}) - f({\bf a}) - \Sigma b_i(x_i - a_i)||\over ||{\bf x} - {\bf a}||} = 0$$ \eject $f: \R \rightarrow \R$: \vskip -5pt $$lim_{x \rightarrow a}{f(x) - f(a) - f'(a)(x-a)\over (x-a)} = 0$$ $y = f'(a)[x-a] + f(a)$ is the linear approximation of $f$ near $a$. ${df \over dx}(a) = f'(a)$ \vskip 5pt \hrule $f: \R^n \rightarrow \R$: \vskip -5pt $$lim_{{\bf x} \rightarrow {\bf a}}{f({\bf x}) - f({\bf a}) - \Sigma b_i(x_i - a_i) \over ||{\bf x} - {\bf a}||} = 0$$ $y = f({\bf a}) + \Sigma b_i(x_i - a_i)$ approximates $y = f({\bf x})$ $f({\bf x}) = f({\bf a}) + \Sigma b_i(x_i - a_i) + ||{\bf x} - {\bf a}|| r({\bf x}, {\bf a})$ \rightline{where $lim_{{\bf x} \rightarrow {\bf a}} r({\bf x}, {\bf a}) = 0$} $(df)_a = \Sigma b_i(x_i - a_i) $ \vskip 5pt \hrule Mean Value Theorem: Suppose \hfil \break 1.) $f$ continuous on $[a, b]$\hfil \break 2.) $f$ differentiable on $(a, b)$ \vskip -5pt Then there exists $c \in (a, b)$ such that $f'(c) = {f(b) - f(a) \over b - a}$ \vskip 5pt \hrule http://www.geometrygames.org/ \vskip -10pt http://www.geometrygames.org/SoS/ \eject $f: \R^n \rightarrow \R$ is differentiable at $a$ if \vskip -5pt $$lim_{{\bf x} \rightarrow {\bf a}}{f({\bf x}) - f({\bf a}) - T({\bf x}- {\bf a}) \over ||{\bf x} - {\bf a}||} = 0$$ $$lim_{{\bf x} \rightarrow {\bf a}} {f({\bf x}) - f({\bf a}) - \Sigma b_i(x_i - a_i) \over ||{\bf x} - {\bf a}||} = 0$$ $y = f({\bf a}) + \Sigma b_i(x_i - a_i)$ approximates $y = f({\bf x})$ $f({\bf x}) = f({\bf a}) + T({\bf x}- {\bf a}) + ||{\bf x} - {\bf a}|| r({\bf x}, {\bf a})$ \rightline{where $lim_{{\bf x} \rightarrow {\bf a}} r({\bf x}, {\bf a}) = 0$} Thm 1.1: If $f$ is differentiable at $a$, then 1.) $f$ is continuous at $a$. 2.) All partial derivatives exist at $a$. 3.) $b_i = ( {\partial f \over \partial x_i})_a$ Proof: 1.) $lim_{{\bf x} \rightarrow {\bf a}}f({\bf x}) = lim_{{\bf x} \rightarrow {\bf a}}f({\bf a}) + T({\bf x}- {\bf a}) + ||{\bf x} - {\bf a}|| r({\bf x}, {\bf a}) =$ 2,3.) ${\partial f \over \partial x_j}({\bf a}) = lim_{h \rightarrow 0} { f({\bf a} + h {\bf e_j}) - f({\bf a}) \over h}$ Thm 1.3: If ${\partial f \over \partial x_j}$ exist for all $j$ in a nbhd of $a$ and if they are continuous at $a$, then $f$ is differentiable at $a$. Proof: HW Defn: Let $V$ be a nonempty open subset of $R^n$, $f: V \rightarrow R^m$, $p \in {\N}$. i.) $f$ is $C^p$ on $V$ is each partial derivative of order $k \leq p$ exists and is continuous on $V$. ii.) $f$ is $C^\infty$ on $V$ if $f$ is $C^p$ on $V$ for all $p \in {\N}$ \vfill \vskip 5pt \hrule \vfill Chain rule 1: Suppose $f: (a, b) \rightarrow \R^n$, $g: \R^n \rightarrow \R$, then ${d \over dt} (g \circ f)_{t_0} = D(G)_{f(t_0)} D(f)_{t_0} = (b_1, ..., b_n) \left(\matrix{ f_1'(t_0) \cr f_2'(t_0) \cr ...\cr f_n'(t_0)}\right) $ \vskip 15pt \rightline{$= \S ({\partial g \over \partial x_i})_{f({t_0})} ({df_i \over dt})_{t_0}$} Ex: $f(t) = (t^2, sin(t))$, $D(f) = \left(\matrix{ 2t \cr cos(t) }\right) $g(x, y) = x + y^3$, $D(g) = (1, 3y^2)$ $(g \circ f)({t}) = g(t^2, sin(t)) = t^2 + sin^3(t)$ $(g \circ f)'({t}) = 2t_0 + 3sin^2(t_0)cos(t_0)$ $ D(g)_{f(t_0)} D(f)_{t_0} = (1, 3sin^2(t_0))\left(\matrix{ 2t_0 \cr cos(t_0) }\right) $, Defn: $U$ is starlike with respect to {\bf a} if ${\bf x} \in U$ implies $\overline{\bf ax} \subset U$ Thm 1.5 (Mean Value Theorem) Let $g$ by a Suppose $U$ is starlike with respect to {\bf a} . Then given ${\bf x} \in U$, there exists $c \in \R$, $0 < t < 1$ such that $g({\bf x}) - g({\bf a}) = \S ({\partial g \over \partial x_i})_{\bf p} (x_i - a_i)$ where ${\bf p} = {\bf a} + t({\bf x} - {\bf a}) Defn: The {\bf Jacobian matrix of $f$ at a} is $$\left[\matrix{{\partial f_i \over \partial x_j}({\bf a})}\right]_{m \times n} = \left[\matrix{ {\partial f_1 \over \partial x_1}({\bf a}) & ... & {\partial f_1 \over \partial x_n}({\bf a}) \cr . & .~~~~ & . \cr . & ~~.~~ & . \cr . & ~~~~. & . \cr {\partial f_m \over \partial x_1}({\bf a}) & ... & {\partial f_m \over \partial x_n}({\bf a}) \cr }\right]$$ Thm 11.12: Let $V$ be a nonempty open subset of $R^n$, $f: V \rightarrow R^m$. If $f$ is differentiable at some point ${\bf a} \in V$, then all first order partial derivatives of $f$ exist at {\bf a} and the matrix which represents the total derivative of $f$ at ${\bf a}$ is the Jacobian matrix of $f$ at ${\bf a}$. If $m = 1$, $Df({\bf a}) = \left[ {\partial f_1 \over \partial x_1} ({\bf a}) ... {\partial f_1 \over \partial x_n}({\bf a})\right]$ In this case, the gradient of $f$ is denoted by $$\nabla f({\bf a}) = \left({\partial f_1 \over \partial x_1}({\bf a}), ..., {\partial f_1 \over \partial x_n}({\bf a})\right)$$ Thm H: Let $V$ be an open subset of $R^n$, ${\bf a} \in V$, $f: V \rightarrow R^m$. $f = (f_1, ..., f_m)$ is differentiable at {\bf a} if and only if for all $i$, $$lim_{{\bf h} \rightarrow 0} {f_i({\bf a} + {\bf h}) - f_i({\bf a}) - \nabla f_i({\bf a}) \cdot {\bf h} \over ||{\bf h}||} = 0$$ Ex: The Jacobian of $f(x, y) = \cases{ x + y & if $xy = 0$ \cr 1 & otherwise}$ exists, but $f$ is not differentiable at (0, 0). \vskip 8pt Thm: Let $V$ be an open subset of $R^n$, ${\bf a} \in V$, $f: V \rightarrow R^m$. If all first order partial derivatives of $f$ exist in $V$ and are continuous at {\bf a}, then $f$ is differentiable at {\bf a}. \vfill \vskip 5pt \hrule \vfill Lemma 11.21: Let $V$ be an open subset of $R^n$, ${\bf a} \in V$, $f: V \rightarrow R^m$. Then $f$ is differentiable at {\bf a} if and only if there is a linear function $T \in {\cal L}(R^n; R^m)$ and a function $\epsilon: R^n \rightarrow R^m$ such that $lim_{{\bf h} \rightarrow 0} \epsilon({\bf h}) = {\bf 0}$ and $$f({\bf a} + {\bf h}) - f({\bf a}) = T({\bf h}) + ||{\bf h}|| \epsilon({\bf h})$$ for sufficiently small $h$ (i.e., there exists an $r > 0$ such that the above holds for $||{\bf h}|| < r$). Lemma 11.22: $D(f \cdot g)({\bf a}) = g({\bf a})Df({\bf a}) + f({\bf a}) Dg({\bf a})$, etc. \end \end \end