Exam 1 March 5, 2008
Math 28 Calculus III

SHOW ALL WORK

Either circle your answers or place on answer line.
[12] 1.) Let $f(x)=\left(x^{2}, \ln \left(5-x^{2}\right), 2\right)$. Let $g(x, y, z)=x y z$. Use the chain rule to calculate $D(f \circ g)(1,2,3)$ and $D(g \circ f)(2)$
\qquad

$$
D(g \circ f)(2)=
$$

\qquad
2.) Suppose $f(x, y)=\ln (x y)$.
[10] a.) Find an equation for the tangent plane to the graph of f at the point $\left(2, \frac{1}{2}, 0\right)$
[4] b.) Approximate $f(1.8,0.6)=$ \qquad
[3] c.) A vector normal to this tangent plane is \qquad
[4] 3a.) $\operatorname{proj}_{(3,2)}(5,9)=$ \qquad
[5] 3b.) Find a unit vector perpendicular to the vectors $(3,2,4)$ and $(-1,5,0)$
[27] 4.) Suppose the elevation of is given by $h(x, y)=4 x^{2}-y^{2}$. Suppose you are at the point $(x, y)=(1,2)$.
[3] а.) $\nabla h(1,2)=$ \qquad
[3] b.) What is the direction of steepest ascent? \qquad
[3] c.) What is the rate of increase in the direction of steepest ascent? \qquad
[3] d.) what is the direction of steepest descent? \qquad
[3] e.) What is the rate of decrease in the direction of steepest descent?
[3] f.) What is the direction where there is no change in elevation?
[3] g.) What is the rate of increase if you travel in the direction $(3,4)$?
[4] h.) Graph several level curves of f (make sure to indicate the height c of each curve). Draw unit vectors in the direction of the gradient at $(1,4)$ and at $(0,2)$.
[2] i.) Identify the quadric surface: \qquad
[9] 5.) Find the following limit if it exists. If it doesn't exist, state why you know it doesn't exist.

$$
\lim _{(x, y) \rightarrow(1,0)}=\frac{y(x+3)}{x+y-1}
$$

[3] 6a.) State the definition of $\lim _{\mathbf{x} \rightarrow \mathbf{a}}=\mathbf{L}$.
[7] 6b.) Suppose $f: \mathbf{R}^{2} \rightarrow \mathbf{R}, f(x, y)=2 y$. Prove that the $\lim _{(x, y) \rightarrow(3,4)} f(x, y)=8$
7.) Circle T for True and F for False:
$[3]$ a.) Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. If $\frac{\partial f}{\partial x_{i}}(\mathbf{a})$ exists for $i=1, \ldots, n$, T F then f is differentiable at \mathbf{a}.
$[3]$ b.) Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. If $\frac{\partial f}{\partial x_{i}}(\mathbf{a})$ exists for $i=1, \ldots, n$, T F then $D_{\mathbf{v}}(f)=\nabla f \cdot \mathbf{v}$.
[3] c.) Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. If f is differentiable at \mathbf{a}, then $D_{\mathbf{v}}(f)=\nabla f \cdot \mathbf{v}$.
$[3]$ d.) Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is smooth. Then $\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}$
[3] e.) Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable. Then $\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}$
[3] f.) If f is differentiable, then f is continuous.
[3] g.) If \mathbf{v} and \mathbf{w} are vectors in \mathbf{R}^{n}, then $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$.
[3] h.) If \mathbf{v} and \mathbf{w} are vectors in \mathbf{R}^{n}, then $\mathbf{v} \times \mathbf{w}=\mathbf{w} \times \mathbf{v}$.

