\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.6truein \vsize 10truein \def\R{{\bf R}} \def\x{{\bf x}} \def\a{{\bf a}} \def\S{\Sigma_{i=1}^n} \def\Sk{\Sigma_{i, j=1}^n} \def\Sjk{\Sigma_{i_1,..., i_k=1}^n} HW (due 4/4) 4.1: 2, 9, 11, 14, 24, 27, 28, 31; 4.2, 1. 13. 28-34 $f(x, y) = ln(xy)$. $\nabla f(x, y) = Df(x, y) = ({1 \over x}, {1 \over y})$ $Hf (x, y) = \left(\matrix{-x^{-2} & 0 \cr 0 & -y^{-2}}\right)$ Let $\a = (1, 1)$ Then the tangent plane to $f(x, y) = ln(x, y)$ at $\a = (1, 1)$ is $p_1(x, y) = f(1, 1) + Df(1, 1) \left(\matrix{ x - 1 \cr y - 1}\right)$ $= 0 + (1, 1) \left(\matrix{ x - 1 \cr y - 1}\right)$ $= x - 1 + y - 1 = x + y - 2$. $p_2(x, y) = f(\a) + Df(\a)(\x - \a) + {1 \over 2}(\x - \a)^T Hf(\a) (\x - \a) = $ \end