1.1 Vectors:
Let \(\mathbf{v} = \left(\frac{1}{2} \right) \).

If \(\mathbf{v} \) = velocity in m/sec of an object, then the object is moving east at a rate of 1 m/sec and north at a rate of 2 m/sec.

Speed of the object =
\[
\|
\mathbf{v}
\| = \|\mathbf{v}\| = \sqrt{1^2 + 2^2}
\]

A vector can be described by its Euclidean coordinates OR by its length and direction.

Let \(\mathbf{w} = \left(\frac{3}{1} \right) \). Then \(\mathbf{v} + \mathbf{w} = \left(\frac{1}{2} \right) + \left(\frac{3}{1} \right) = \left(\frac{1+3}{2+1} \right) = \left(\frac{4}{1} \right) \).

\[\mathbf{v} + \mathbf{w} = \mathbf{0} \text{ at } (1, 2) \text{ and } (2, 1) \]

\[\mathbf{v} - \mathbf{w} = \left(\frac{1}{2} \right) - \left(\frac{3}{1} \right) = \left(\frac{1}{2} \right) + \left(\frac{-3}{1} \right) = \left(\frac{1-3}{2+1} \right) = \left(\frac{-2}{3} \right) \]

\[\mathbf{v} - \mathbf{w} \text{ is the vector starting at the point } \begin{pmatrix} 1 \\ 3 \end{pmatrix} \text{ and ending at the point } \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

2.1 Let \(f : X \to Y \) where \(X \subseteq \mathbb{R}^n, Y \subseteq \mathbb{R}^m \)

Graph of \(f = \{(x, f(x)) | x \in X \} \subseteq \mathbb{R}^n \times \mathbb{R}^m \)

Domain of \(f = X \),

Ccodomain of \(f = Y \)

Range of \(f = \text{Image of } f = f(X) \)

\[\{ y \in Y | \text{ there exists } x \in X \text{ such that } f(x) = y \} \]

\(f \) is a function if for all \(x \) in domain of \(f \), \(f(x) \) has a unique value.

I.e., for all \(x, y \) in \(Y \), if \(x = y \), then \(f(x) = f(y) \) and for all \(x \) in \(X \), \(f(x) \) is defined.

\[f \text{ is 1:1 if } f(x) = f(y) \text{ implies } x = y. \]

\(f \) gives a one-to-one correspondence between \(X \) and \(f(X) \).

Given \(b \in Y \), \(f(x) = b \) has at most one solution

Side-note: \(f(x) = b \) has exactly one solution if \(b \in f(X) \).

Side-note: \(f(x) = b \) has no solution if \(b \notin f(X) \).

\[f \text{ is onto if } f(X) = Y \text{ (i.e., image of } f \text{ = codomain of } f). \]

Given \(b \in Y \), \(f(x) = b \) has at least one solution.

\[f(x) = x^2 \quad f : \mathbb{R} \to \mathbb{R} \]

\[f(x) = -y \quad f : \mathbb{R} \to \mathbb{R} \]

Not onto

\[f(x) = x^2 \]

\[f(x) = -y \]

\[f : \mathbb{R} \to \mathbb{R} \]
Ex 1: \(f: \mathbb{R}^n \rightarrow \mathbb{R}, f(x) = ||x|| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \)

Domain = \(\mathbb{R}^n \)
Codomain = \(\mathbb{R} \)
Image = \([0, \infty)\)

Is \(f \) 1:1? NO

Proof: \(f(1, 0, 0, \ldots, 0) = \sqrt{1+0+0+\ldots} = 1 \)
\(f(-1, 0, \ldots, 0) = \sqrt{1+0+0+\ldots} = 1 \)

Is \(f \) onto? NO

Proof: \(\text{Codomain} = \mathbb{R} \)
\(\text{Image} = [0, \infty) \)
\(\mathbb{R} \neq [0, \infty) \)

Alternate Proof:
\(f(-x) = -1 \) has no solution or -1 is not in the image of \(f \)

Ex 2: \(g(x, y) = (x^2y^4 - y^6) \)

Domain = \(\mathbb{R}^2 \)
Codomain = \(\mathbb{R} \)

Is \(g \) 1:1? NO

Proof: \(g(4, 0) = g(-4, 0) \)

Alternate Proof: \(g(0, 1) = g(0, -1) \)

Is \(g \) onto? NO

Proof: \(g(x, y) = (0, 0, -1) \) has no solution \((0, 0, -1) \) is not in image of \(g \)

Ex 3: \(h(x) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \end{pmatrix} \)

I.e., \(h(x) = (x + 2y + 3z, 4x + 5y + 6z) \).

Domain = \(\mathbb{R}^3 \)
Codomain = \(\mathbb{R}^2 \)
Image = \([0, \infty)\)

Is \(h \) onto? NO

Is \(h \) 1:1?

How many solutions does \(h(x) = b \) have?

I.e., how many solutions does \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \) have?

I.e., how many solutions does the following system of equations have:
\[
\begin{align*}
x + 2y + 3z &= b_1, \\
4x + 5y + 6z &= b_2.
\end{align*}
\]

Does \(\begin{pmatrix} 1 \\ 4 \\ 5 \\ 6 \end{pmatrix} x + \begin{pmatrix} 2 \\ 2 \\ 3 \\ 6 \end{pmatrix} y + \begin{pmatrix} 3 \\ 6 \end{pmatrix} z \) span all of \(\mathbb{R}^2 \)?

Is \(\{ \begin{pmatrix} 1 \\ 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 3 \\ 6 \end{pmatrix} \} \) linearly independent?
Definitions:

If the codomain of f is \mathbb{R} (i.e., $f : X \rightarrow \mathbb{R}$), we say that f is real-valued or scalar valued.

Suppose $f : X \subset \mathbb{R}^2 \rightarrow \mathbb{R}$ and c is a constant scalar.

The **level curve at height** c of f is the curve in \mathbb{R}^2 defined by $f(x, y) = c$. That is, the level curve at height c of $f = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = c\}$.

The **contour curve at height** c of f is the curve in \mathbb{R}^3 defined by the two equations, $z = f(x, y), z = c$. That is, the contour curve at height c of $f = \{(x, y, z) \in \mathbb{R}^2 \mid z = f(x, y) = c\} = \{(x, y, f(x, y)) \in \mathbb{R}^3 \mid f(x, y) = c\}$.

Recall the graph of $f = \{(x, y, z) \mid z = f(x, y)\}$

= $\{(x, y, f(x, y)) \mid (x, y) \in X\} \subset \mathbb{R}^2 \times \mathbb{R}$

The **section of the graph of** f by the plane $z = c$ is the set of points in \mathbb{R}^3 defined by the two equations, $z = f(x, y), x = c$. That is, the section by $x = c$ is $\{(x, y, z) \in \mathbb{R}^2 \mid z = f(x, y), x = c\}$

= $\{(c, y, f(c, y)) \in \mathbb{R}^3 \mid (c, y) \in X\}$.

The section by $y = c$ is $\{(x, y, z) \in \mathbb{R}^2 \mid z = f(x, y), y = c\}$

= $\{(x, c, f(x, c)) \in \mathbb{R}^3 \mid (x, c) \in X\}$.

Graph of $f : \mathbb{R}^3 \rightarrow \mathbb{R}$

The domain is $\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}$

$0 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0$
Parabola: \(y = ax^2 + b \)

\[\frac{y - \frac{a}{4}}{2} = x \]

Hyperbola: \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)

Ellipse: \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

Circle: \(x^2 + y^2 = r^2 \)

In 2D: \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 \)
Conics in \mathbb{R}^2: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

for suitable constants A, \ldots, F.

In \mathbb{R}^3, the analytic analogue of the conic section is called a **quadric surface**. Quadric surfaces are those defined by equations that are polynomials of degree two in three variables:

$$Ax^2 + Bxy + Cxz + Dy^2 + Eyz + Fz^2 + Gx + Hy + Iz + J = 0.$$

Figure 2.20 The sphere of radius a, centered at (x_0, y_0, z_0).

Figure 2.21 The ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$
Figure 2.22 The elliptic paraboloid

\[
\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}.
\]

\[
z = k' + \frac{y^2}{z}.
\]

Figure 2.23 The hyperbolic paraboloid

\[
\frac{z}{c} = \frac{y^2}{b^2} - \frac{x^2}{a^2}.
\]
Figure 2.24 The elliptic cone \(\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} \).

Section at \(z = c \):
- Contour curve at height \(c \).

\(x = 3 \) hyperbola: \(\frac{z^2}{c^2} - \frac{y^2}{b^2} = \frac{9}{a^2} \)

Figure 2.25 The graph of the equation \(\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \) is a hyperboloid of one sheet.

Figure 2.26 The graph of the equation \(\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is a hyperboloid of two sheets.

Larger \(|z| \)