\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \voffset -0.5truein %%\hsize 6.7truein \voffset -0.8truein \vsize 9.8truein \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\n{{\bf n}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{ \hskip 20pt} \def\v{ \vskip 5pt } {\bf 6.2 Green's Theorem} Suppose $F: \R^2 \rightarrow \R^2$, $F(x, y) = (M(x, y), N(x, y))$. \hfil \break $S \subset \R^2$ is a nice compact surface. $\int_{\partial S} F \cdot ds = \int_{\partial S} (M, N) \cdot (dx, dy) =$ $\int_{\partial S} Mdx + Ndy = \int\int_S [{\partial N \over \partial x} - {\partial M \over \partial y}]dA$ $ =\int\int_S [\nabla \times F] \cdot \k dA$ \vfill \hrule {\bf 7.3 Stoke's Theorem} Suppose $F: \R^3 \rightarrow \R^3$, $F(x, y, z) = (M(x, y, z), N(x, y, z), P(x, y, z))$. $S \subset \R^3$ is a bounded, piecewise smooth, oriented surface. $\int_{\partial S} F \cdot ds =\int\int_S [\nabla \times F] \cdot dS$ \v \rightline{$=\int\int_X [(\nabla \times F) (X(s, t))] \cdot N(s, t) ds dt$} \vfill \eject Ex: Suppose $\partial S = \emptyset$ $\int\int_S [\nabla \times F] \cdot dS = \int_{\partial S} F \cdot ds = $ \vfill \hrule Ex: Suppose $\partial S = \{(x, y, 0) ~|~ x^2 + y^2 = 1\} = \partial {\tilde S}$ $\int\int_S [\nabla \times F] \cdot dS = \int_{\partial S} F \cdot ds = $ $\int\int_{\tilde S} [\nabla \times F] \cdot d{\tilde S}$ Suppose ${\tilde S} = \{(x, y, 0) ~|~ x^2 + y^2 \leq 1\}$ A parametrization for ${\tilde S}$ $X(s, t) = (s (cos t), s (sin t), 0)$ $T_s(s, t) = (cos t, sin t, 0)$ $T_t(s, t) = (-s (sin t), s (cos t), 0)$ $N(s, t) = (0, 0, s)$ Suppose $F(x, y, z) = (y^2, 3, z^2)$ \vfill \eject ~ \eject Another parametrization for ${\tilde S}$ $Y(s, t) = (s , t, 0)$ $T_s(s, t) = (1, 0, 0)$ $T_t(s, t) = (0, 1, 0)$ $N(s, t) = (0, 0, 1)$ Suppose $F(x, y, z) = (y^2, 3, z^2)$ $\nabla \times F = (0, 0, -2y)$ $\int\int_{\tilde S} [\nabla \times F] \cdot d{\tilde S}$ $ = \int\int_{\tilde S} (0, 0, -2y) \cdot d{\tilde S}$ {$=\int\int_Y [(\nabla \times F) (X(s, t))] \cdot N(s, t) ds dt$} {$=\int_{-1}^1\int_{-\sqrt{1 - t^2}}^{\sqrt{1 - t^2}}(0, 0, -2t) \cdot (0, 0, 1) ds dt$} {$=-\int_{-1}^1\int_{-\sqrt{1 - t^2}}^{\sqrt{1 - t^2}} ~2t ds dt$} {$=-\int_{-1}^1 2ts|_{-\sqrt{1 - t^2}}^{\sqrt{1 - t^2}} ~ dt$} {$=-\int_{-1}^1 4t \sqrt{1 - t^2} ~ dt$} Let $u = 1 - t^2$, $du = -2tdt$, $t = \pm 1$ implies $u = 0$ {$=-\int_{0}^0 -2 \sqrt{u} ~ du = 0$ } \eject {\bf 6.2 Divergence Theorem in the Plane} Suppose $F: \R^2 \rightarrow \R^2$, $F(x, y) = (M(x, y), N(x, y))$. \hfil \break $S \subset \R^2$ is a nice compact surface. \hfil \break $\n \subset \R^2$, outward unit normal to $\partial S$. $ \int_{\partial S} F \cdot \n ds = $ $\int\int_{S} [\nabla \cdot F] dA$ \vfill \hrule {\bf 7.3 Gauss's Theorem} Suppose $F: \R^3 \rightarrow \R^3$, $F(x, y, z) = (M(x, y, z), N(x, y, z), P(x, y, z))$. $D \subset \R^3$ is a bounded, solid nice 3-dimensional region. $\int \int_{\partial D} F \cdot dS =\int \int\int_D [\nabla \cdot F] dV$ \vfill \vfill \eject Calculate $\int \int_S F \cdot dS$ where $F(x, y, z) = (xy^2, y^3, 4x^2z)$, ~~ $S = S_1 \cup S_2 \cup S_3$ and $S_1 = \{ (x, y, 5) ~|~ x^2 + y^2 \leq 4 \}$ $S_2 = \{ (x, y, z) ~|~ x^2 + y^2 = 4, 0 \leq z \leq 5 \}$ $S_3 = \{ (x, y, 0) ~|~ x^2 + y^2 \leq 4 \}$ \vfill \eject Let $S_a$ = sphere of radius $a$ centered at the point $P = (P_1, P_2, P_3)$ Prop 3.4. Divergence of $F$ at $P$= $(\nabla \cdot F)(P_1, P_2, P_3) =$ $ lim {3 \over 4\pi a^3} \int\int_{S_a} F \cdot dS$ $ = lim_{a \rightarrow 0^+} {\int\int_{S_a} F \cdot dS \over {4\pi a^3 \over 3}} $ $ = lim_{a \rightarrow 0^+} {\hbox{flux} \over {\hbox{volume of ball of radius a}}} $ = flux density \vfill \eject Let $C_a$ = the circle of radius $a$ centered at the point $P = (P_1, P_2, P_3)$ lying in the plane perpendicular to the unit vector $\n$ and containing the point $P$. Prop 3.5. The component of the curl of $F$ at $P$ in the direction of $\n = $ %%||$proj$_\n (\nabla \times F)(P)|| =$ $\n \cdot (\nabla \times F)(P) = lim_{a \rightarrow 0^+} {1 \over \pi a^2} \int_{C_a} F \cdot ds$ $= lim_{a \rightarrow 0^+} {1 \over \pi a^2} \int_X (F \cdot T) ds$ $= {\hbox{circulation of $F$ along $C_a$} \over \hbox{area of surface bounded by $C_a$}}$ \end