\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein %%\hsize 7truein \voffset -0.3truein \vsize 9.8truein \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{ \hskip 20pt} 6.3 Vector Line integrals: Calc 1 review: Suppose $f: \R \rightarrow \R$, Fundamental Theorem of Calculus: $\int_a^b f'(t) dt = f(b) - f(a)$. $\int_a^b $(velocity) $dt =$ distance traveled. $\int_a^b $(rate of change)$ dt = $ total change. Given $f'(t)$, can find $f(b) - f(a)$. Given velocity, can find distance traveled. Given rate of change, can find total change. Calc III: Suppose $f: \R^2 \rightarrow \R$, Given $\partial f = ( {\partial f \over \partial x}, {\partial f \over \partial y})$, find $f({\bf p}) - f({\bf q})$. %%Suppose $\Delta f = (c_1, c_2)$, a constant gradient field. \eject 6.1 vector field integral review: Let $F(x, y) = (x, y)$, let $x(t) = $ {\bf Notation 1: Work definition} $\int_C F \cdot ds = \int_{C_1} F \cdot ds + \int_{C_2} F \cdot ds $ $= \int_0^1 F(\x_1(t))\cdot \x_1'(t) dt + \int_0^1 F(\x_2(t))\cdot \x_2'(t) dt$ $= \int_0^1 F(t, 0) \cdot (1, 0) dt + \int_0^1 F(1, t) \cdot (0, 1) dt$ $= \int_0^1 (t,0) \cdot (1, 0) dt + \int_0^1 (1, t) \cdot (0, 1) dt$ $= \int_0^1 t dt + \int_0^1 t dt = 2({1 \over 2}t^2)|_0^1 = {1}$ {\bf Notation 2: differential form} $\int_C F \cdot ds = \int_{C_1} F \cdot ds + \int_{C_2} F \cdot ds $ $= \int_{C_1} F \cdot (dx, dy) + \int_{C_2} F \cdot (dx, dy) $ $= \int_{C_1} (x, y) \cdot (dx, dy) + \int_{C_2} (x, y) \cdot (dx, dy) $ $= \int_{C_1} (x dx + y dy) + \int_{C_2} (x dx + y dy) $ $= \int_0^1 t dt + \int_0^1 (1(0) + t dt) = 2({1 \over 2}t^2)|_0^1 = {1}$ {\bf Note:} Both of the above methods are algebraically equivalent, so it doesn't matter which notation you use. \eject {\bf Notation 3: Tangent vector (circulation)} $\int_C F \cdot ds = \int_\x F(x, y) \cdot T(x, y) ds$ where $T$ is the unit tangent vector to the path $\x$. $\x_1(t) = (t, 0)$, $\x_1'(t) = (1, 0)$, $||\x_1'(t)|| = 1$.~~ \rightline{ Thus $T_1(x, y) = (1, 0)$} $\x_2(t) = (1, t)$, $\x_2'(t) = (0, 1)$, $||\x_2'(t)|| = 1$. \rightline{ Thus $T_2(x, y) = (0, 1)$} $\int_C F \cdot ds = \int_{\x_1} F \cdot T_1 ds + \int_{\x_2} F \cdot T_2 ds $ $= \int_{\x_1} F(x, 0) \cdot (1, 0) ds + \int_{\x_2} F(1, y) \cdot (0, 1) ds$ $= \int_{\x_1} (x, 0) \cdot (1, 0) ds + \int_{\x_2} (1, y) \cdot (0, 1) ds$ $= \int_{\x_1} x ds + \int_{\x_2} y ds$ \hfill [Note: these are scalar line integrals] $= \int_0^1 t ||x_1'(t)|| dt + \int_0^1 t ||x_2'(t)|| dt $ $= \int_0^1 t (1) dt + \int_0^1 t (1)dt = 2({1 \over 2}t^2)|_0^1 = {1}$ Note: The algebra for notation 3 is slightly messier than for notations 1 and 2, thus this notation is normally used only when it is possible to determine circulation geometrically. %%\vskip 5pt %%\hrule %%\vskip -5pt \eject Can use any parametrization for the path $\x$. For example: $\x_1:[0, 1] \rightarrow \R^2$, $\x_1(t) = (t^2, 0)$ $\x_2:[0, 1] \rightarrow \R^2$, $\x_2(t) = (t^3, 0)$ {\bf Notation 1: Work definition} $\int_C F \cdot ds = \int_{C_1} F \cdot ds + \int_{C_2} F \cdot ds $ $= \int_0^1 F(\x_1(t))\cdot \x_1'(t) dt + \int_0^1 F(\x_2(t))\cdot \x_2'(t) dt$ $= \int_0^1 F(t^2, 0) \cdot (2t, 0) dt + \int_0^1 F(1, t^3) \cdot (0, 3t^2) dt$ $= \int_0^1 (t^2,0) \cdot (2t, 0) dt + \int_0^1 (1, t^3) \cdot (0, 3t^2) dt$ $= \int_0^1 2t^3 dt + \int_0^1 3t^5 dt = {1 \over 2} t^4|_0^1 + {1 \over 2}t^6|_0^1 = {1}$ {\bf Notation 2: differential form} $\int_C F \cdot ds = \int_{C_1} F \cdot ds + \int_{C_2} F \cdot ds $ $= \int_{C_1} F \cdot (dx, dy) + \int_{C_2} F \cdot (dx, dy) $ $= \int_{C_1} (x, y) \cdot (dx, dy) + \int_{C_2} (x, y) \cdot (dx, dy) $ $= \int_{C_1} [x dx + y dy] + \int_{C_2} [x dx + y dy] $ $= \int_0^1 t^2 (2t)dt + \int_0^1 1(0) + t^3 3t^2dt = {1 \over 2} t^4|_0^1 + {1 \over 2}t^6|_0^1 = {1}$ {\bf Note:} Both of the above methods are algebraically equivalent, so it doesn't matter which notation you use. \eject {\bf Notation 3: Tangent vector (circulation)} $\int_C F \cdot ds = \int_\x F(x, y) \cdot T(x, y) ds$ where $T$ is the unit tangent vector to the path $\x$. $\x_1(t) = (t^2, 0)$, $\x_1'(t) = (2t, 0)$, $||\x_1'(t)|| = 2t$. \rightline{Thus $T_1(x, y) = (1, 0)$} $\x_2(t) = (1, t^3)$, $\x_2'(t) = (0, 3t^2)$, $||\x_2'(t)|| = 3t^2$. \rightline{Thus $T_2(x, y) = (0, 1)$} $\int_C F \cdot ds = \int_{\x_1} F \cdot T_1 ds + \int_{\x_2} F \cdot T_2 ds $ $= \int_\x F(x, 0) \cdot (1, 0) ds + \int_\x F(1, y) \cdot (0, 1) ds$ $= \int_\x (x, 0) \cdot (1, 0) ds + \int_\x (1, y) \cdot (0, 1) ds$ $= \int_\x x ds + \int_\x y ds$ \hfill [Note: these are scalar line integrals] $= \int_0^1 t^2 ||x_1'(t)|| dt + \int_0^1 t^3 ||x_2'(t)|| dt $ $= \int_0^1 t^2 (2t)dt + \int_0^1 t^3 3t^2dt = {1 \over 2} t^4|_0^1 + {1 \over 2}t^6|_0^1 = {1}$ Note: The algebra for notation 3 is slightly messier than for notations 1 and 2, thus this notation is normally used only when it is possible to determine circulation geometrically. \vfill {\bf Method 2: 6.2 Green's Theorem} \h Curve is not closed, so can't use Green's Theorem. \eject {\bf Method 3: 6.3 Claim $F$ has path independent line integrals} Claim $F$ is a gradient field {\it submethod 1}:\hfil \break $F(x, y) = (x, y) = ( {\partial f \over \partial x}, {\partial f \over \partial y}) = \nabla f = \nabla ({1 \over 2}x^2 + {1 \over 2}y^2)$. \h I.e, $f(x, y) = {1 \over 2}x^2 + {1 \over 2}y^2$. \h $\int_C F \cdot ds = f(1, 1) - f(0, 0) = {1 \over 2} + {1 \over 2} - 0 = 1$. {\it submethod 2}: Claim $(\nabla \times F)(\x) = \0$ for all $\x \in \R^n$ Since $n = 2$, $(\nabla \times F)(\x) = \0$ for all $\x \in \R^n$ iff ${\partial N \over \partial x} = {\partial M \over \partial y}$, where $F = (M, N)$. \h ${\partial y \over \partial x} = 0 = {\partial x \over \partial y}$ Thus can choose any path starting at (0, 0) and ending at (1, 1) Ex: Let $\x:[0, 1] \rightarrow \R^2$, $\x(t) = (t, t)$. $\int_C F \cdot ds = \int_0^1 F(\x(t))\cdot \x'(t) dt$ $= \int_0^1 F(t, t)\cdot (1, 1) dt$ $= \int_0^1 (t, t)\cdot (1, 1) dt$ $= \int_0^1 2t dt = t^2|_0^1 = {1}$ \eject {\bf Closed curve example} Suppose $\x:[0, 2\pi]\rightarrow \R^n$, $\x(t) = (cos(t), sin(t))$ {\bf Notation 1: Work definition} $\int_C F \cdot ds = \int_0^{2\pi} F(\x(t))\cdot \x'(t) dt$ $= \int_0^{2\pi} F(cos(t), sin(t))\cdot (-sin(t), cos(t)) dt$ $= \int_0^{2\pi} (cos(t), sin(t))\cdot (-sin(t), cos(t)) dt$ $= \int_0^{2\pi} [-cos(t)sin(t) + sin(t)cos(t)] dt$ $= \int_0^{2\pi} 0 ~dt = 0$ {\bf Notation 2: differential form} $\int_C F \cdot ds = \int_{C} F \cdot (dx, dy) $ $= \int_{C} (x, y) \cdot (dx, dy) $ $= \int_{C} [x dx + y dy]$ $= \int_0^{2\pi} [cos(t) (-sin(t))dt + sin(t)cos(t) dt]$ $= \int_0^{2\pi} 0~ dt = 0$ \vfill {\bf Notation 3: Tangent vector (circulation)} Circulation = 0. Thus $\int_C F \cdot ds = 0$ \eject {\bf Method 2: 6.2 Green's Theorem} \h Let $F = (M, N) = (x, y)$ \h $\int_C F \cdot ds = \int_C Mdx + Ndy = \int\int_D (\nabla \times f) \cdot \k ~dA$ \h $ = \int\int_D [{\partial N \over \partial x} - {\partial M \over \partial y}]dA = \int\int_D [{\partial y \over \partial x} - {\partial x \over \partial y}]dA$ $= \int\int_D 0 dA$ \h Use chapter 5 methods to evaluate double integral. Note this method is algebraically different than using the definition of vector line integrals. Thus if one method is algebraically difficult, try the other method. {\bf Method 3: 6.3 Claim $F$ has path independent line integrals} Claim $F$ is a gradient field {\it submethod 1:} \hfil \break $F(x, y) = (x, y) = ( {\partial f \over \partial x}, {\partial f \over \partial y}) = \nabla f = \nabla ({1 \over 2}x^2 + {1 \over 2}y^2)$. \h I.e, $f(x, y) = {1 \over 2}x^2 + {1 \over 2}y^2$. \h $\int_C F \cdot ds = 0$ since C is a closed curve. {\it submethod 2:} Claim $(\nabla \times F)(\x) = \0$ for all $\x \in \R^n$ Since $n = 2$, $(\nabla \times F)(\x) = \0$ for all $\x \in \R^n$ iff ${\partial N \over \partial x} = {\partial M \over \partial y}$, where $F = (M, N)$. \h ${\partial y \over \partial x} = 0 = {\partial x \over \partial y}$ \h $\int_C F \cdot ds = 0$ since C is a closed curve. \end