\magnification 1900 \parskip 10pt \parindent 0pt \hoffset -0.4truein \hsize 7truein \voffset -0.3truein \vsize 10truein \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} Scalar Line Integrals: Let $\x: [a, b] \rightarrow \R^n$ be a $C^1$ path. $f: \R^n \rightarrow R$, a scalar field. $\Delta s_k = $ length of kth segment of path \centerline{= $\int_{t_{k-1}}^{t_k} ||\x'(t)||dt = ||\x'(t_k^{**})||(t_k - t_{k-1}) = ||\x'(t_k^{**})||\Delta t_k$ } \rightline{for some $t_k^{**} \in [t_{k-1}, {t_k}] $} $\int_\x f~ds \sim \S f(\x(t_k^*))\Delta s_k = \S f(\x(t_k^*)) ||\x'(t_k^{**})||\Delta t_k$ \f \centerline{Thus $\int_\x f~ds = \int_a^b f(\x(t))||\x'(t)|| dt$} \vfill \vskip 5pt \hrule Vector Line integrals: Let $\x: [a, b] \rightarrow \R^n$ be a $C^1$ path. $F: \R^n \rightarrow R^n$, a vector field. $\x'(t_k^{*}) \sim { \Delta \x_k \over \Delta t_k}$ $\int_\x F \cdot ds \sim \S F(\x(t_k^*)) \cdot \Delta \x_k = \S F(\x(t_k^*)) \cdot \x'(t_k^{*}) \Delta t_k$ \f \centerline{Thus $\int_\x F \cdot ds = \int_a^b F(\x(t)) \cdot \x'(t) dt$} \vfill \eject Other Formulations of Vector Line integrals: \vskip -5pt The tangent vector to $\x$ at $t$ is $T(t) = {\x'(t) \over ||\x'(t)||}$ $\int_\x F \cdot ds = \int_a^b F(\x(t)) \cdot \x'(t) dt = \int_a^b F(\x(t)) \cdot \x'(t) {||\x'(t)|| \over ||\x'(t)||} dt = \int_a^b F(\x(t)) \cdot T(t) ||\x'(t)|| dt = \int_\x F(\x(t)) \cdot T(t) ds $ Note $\int_a^b F(\x(t)) \cdot T(t) ds $ is a scalar line integral of the scalar field $F \cdot T: \R^n \rightarrow \R$ over the path $\x$. \f \line{Note: $F \cdot T$ is the tangential component of $F$ along the path $\x$.} \vskip 5pt \hrule \vskip -5pt Another notation (differential form): \vskip -5pt For simplicity, we will work in $\R^2$, but the following generalizes to any dimension. Let $\x(t) = (x(t), y(t))$. Let $F(x, y) = (M(x, y), N(x, y) )$ $x = x(t), y = y(t)$. Also $x'(t) = {dx \over dt}$, $y'(t) = {dy \over dt}$ \vskip -3pt $$\int_\x F \cdot ds = \int_a^b F(\x(t)) \cdot \x'(t) dt$$ $$= \int_a^b (M(x, y), N(x, y) ) \cdot (x'(t), y'(t)) dt$$ $$= \int_a^b (M(x, y), N(x, y) ) \cdot (x'(t)dt, y'(t)dt)$$ $$= \int_\x (M(x, y), N(x, y) ) \cdot (dx, dy)$$ $$= \int_\x M(x, y) dx + N(x, y) dy$$ %%$$= \int_a^b (M(x, y), N(x, y) ) \cdot (x'(t), y'(t)) dt$$ %%$$= \int_a^b M(x, y)x'(t)dt + N(x, y) y'(t) dt$$ %%$$= \int_\x M(x, y) dx + N(x, y) dy$$ \eject Definitions: A {\it curve} is the image of piecewise $C^1$ path $\x: [a, b] \rightarrow \R^n$. \vfill A curve is {\it simple} if it has no self-intersections; that is, $\x$ is 1:1 on the open interval $(a, b)$ \vfill A path is {\it closed} if $\x(a) = \x(b)$ A curve is {\it closed} if there exists a parametrization of the curve such that $\x(a) = \x(b)$ \vfill $\int_\x F \cdot ds$ is called the {\it circulation} of $f$ along $\x$ if $\x$ is a closed path. \eject A {\it parametrization} of a curve $C$ is a path whose image is $C$. Normally we will require a parametrization of a curve to be 1:1 where possible. \vskip 5pt \hrule A piecewise $C^1$ path $\y: [c, d] \rightarrow \R^n$ is a {\it reparametrization} of a piecewise $C^1$ path $\x: [a, b] \rightarrow \R^n$ if there exists a bijective $C^1$ function $u: [c, d] \rightarrow [a, b]$ where the inverse of $u$ is also $C^1$ and $\y = \x \circ u$ (i.e., $\y(t) = \x(u(t))$). Note that either \bh 1.) $u(a) = c$ and $u(b) = d$. In this case, we say that $\y$ (and $u$ are orientation-preserving OR \u 2.) $u(a) = d$ and $u(b) = c$. In this case, we say that $\y$ (and $u$ are orientation-reversing. \vskip 5pt \hrule Given piecewise $C^1$ path, $\x: [a, b] \rightarrow \R^n$, the {\it opposite path} is $ \x_{opp}: [a, b] \rightarrow \R^n$ $\x_{opp} = \x(a + b - t)$ That is $\x_{opp}$ is an orientation-reversing reparametrization of $\x$ where $u [a, b] \rightarrow [a, b]$, $u(t) = a + b - t$. \vskip 5pt \hrule Thm: Let $\x: [a, b] \rightarrow \R^n$ be a piecewise $C^1$ path and let $\y: [c, d] \rightarrow \R^n$ be a reparametrization of $\x$. Then if $f: \R^n \rightarrow \R$ is continuous, then $\int_\y f~ds = \int_\x f~ds$ if $F: \R^n \rightarrow \R^n$ is continuous, then ~~~~~~~$\int_\y F \cdot ds = \int_\x F \cdot ds $ if $\y$ is orientation-preserving. ~~~~~~~$\int_\y F \cdot ds = -\int_\x F \cdot ds $ if $\y$ is orientation-reversing. \end \end Given $\nabla f = ( {\partial f \over \partial x}, {\partial f \over \partial y})$, find $f({\bf p}) - f({\bf q})$. %%Suppose $\Delta f = (c_1, c_2)$, a constant gradient field.