\magnification 1800 \parskip 16pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.6truein \vsize 10truein \def\R{{\bf R}} \def\x{{\bf x}} \def\a{{\bf a}} \def\S{\Sigma_{i=1}^n} \def\Sk{\Sigma_{i, j=1}^n} \def\Sjk{\Sigma_{i_1,..., i_k=1}^n} \def\v{\vskip 12pt} $f(x, y) = ln({xy \over 3})$. $\nabla f(x, y) = Df(x, y) = ({1 \over x}, {1 \over y})$ Hessian of $f$ = $Hf (x, y) = \left(\matrix{ {\partial[\nabla f(x, y)] \over \partial x} \cr {\partial[\nabla f(x, y)] \over \partial y} }\right)= \left(\matrix{ {\partial^2 f \over \partial^2 x} & {\partial^2 f \over \partial y \partial x} \cr {\partial^2 f \over \partial y \partial x} & {\partial^2 f \over \partial^2 y} }\right)$ Thus $Hf (x, y) = \left(\matrix{-x^{-2} & 0 \cr 0 & -y^{-2}}\right)$ Let $\a = (3, 1)$. Then $f(3, 1) = ln({(3)(1) \over 3}) = ln(1) = 0$. $\nabla f(3, 1) = Df(3, 1) = ({1 \over 3}, {1})$ $Hf (3, 1) = \left(\matrix{-3^{-2} & 0 \cr 0 & -1^{-2}}\right) = \left(\matrix{-{1 \over 9} & 0 \cr 0 & -1}\right)$ {\bf First order approximation of $f$ near $\a = (3, 1)$: } Tangent plane to $f(x, y) = ln(x, y)$ at $\a = (3, 1)$ is \v \centerline{$p_1(x, y) = f(\a) + Df(\a)(\x - \a)$} $p_1(x, y) = f(3, 1) + Df(3, 1) \left(\matrix{ x - 3 \cr y - 1}\right)$ $= 0 + ({1 \over 3}, 1) \left(\matrix{ x - 3 \cr y - 1}\right)$ \v \rightline{ $= {1 \over 3}(x - 3) + y - 1 = {1 \over 3}x - 1 + y - 1$.} \v \centerline{Thus $p_1(x, y) = {1 \over 3}x + y - 2 $.} \eject {\bf Second order approximation of $f$ near $\a = (3, 1)$: } $p_2(x, y) = f(\a) + Df(\a)(\x - \a) + {1 \over 2}(\x - \a)^T Hf(\a) (\x - \a)$ \v \v $p_2(x, y) = {1 \over 3}x + y - 2 + {1 \over 2}(x-3, y-1) \left(\matrix{-{1 \over 9} & 0 \cr 0 & -1}\right)\left(\matrix{ x - 3 \cr y - 1}\right)$ $p_2(x, y) = {1 \over 3}x + y - 2 + {1 \over 2}(x-3, y-1) \left(\matrix{ -{1 \over 9} (x - 3) \cr -(y - 1)}\right)$ $p_2(x, y) = {1 \over 3}x + y - 2 - {1 \over 18} (x - 3)^2 - {1 \over 2} (y - 1)^2$ \end \v \hrule $p_2(\x) = f(\a) + Df(\a)(\x - \a) + {1 \over 2}(\x - \a)^T Hf(\a) (\x - \a)$ If $f: \R^2 \rightarrow \R$, $p_2(x, y) = f(a_1, a_2) + \left(\matrix{ {\partial f \over \partial x}(a_1, a_2) & {\partial f \over \partial y }(a_1, a_2) }\right) \left(\matrix{ x - a_1 \cr y - a_2}\right) $ \v \rightline{$+ {1 \over 2}(x - a_1, y -a_2) \left(\matrix{ {\partial^2 f \over \partial^2 x}(a_1, a_2) & {\partial^2 f \over \partial y \partial x}(a_1, a_2) \cr {\partial^2 f \over \partial y \partial x}(a_1, a_2) & {\partial^2 f \over \partial^2 y}(a_1, a_2) }\right) \left(\matrix{ x - a_1 \cr y - a_2}\right)$} $p_2(x, y) = f(a_1, a_2) + \left(\matrix{ f_{x} (a_1, a_2) & f_{y}(a_1, a_2) }\right) \left(\matrix{ x - a_1 \cr y - a_2}\right) $ \v \rightline{$+ {1 \over 2}(x - a_1, y -a_2) \left(\matrix{ f_{xx} (a_1, a_2) & f_{xy}(a_1, a_2) \cr f_{yx} (a_1, a_2) & f_{yy}(a_1, a_2) }\right) \left(\matrix{ x - a_1 \cr y - a_2}\right) $} $p_2(x, y) = f(a_1, a_2) + \left(\matrix{ f_{x} & f_{y} }\right) \left(\matrix{ x - a_1 \cr y - a_2}\right) $ \v \rightline{$+ {1 \over 2}(x - a_1, y -a_2) \left(\matrix{ f_{xx} & f_{xy} \cr f_{yx} & f_{yy} }\right) \left(\matrix{ x - a_1 \cr y - a_2}\right) $} $p_2(x, y) = f(a_1, a_2) + f_{x} [x - a_1] + f_{y} [y - a_2] $ \v \rightline{$+ {1 \over 2}(x - a_1, y -a_2) \left(\matrix{ f_{xx} [x - a_1] + f_{xy}[y - a_2] \cr f_{yx} [x - a_1] + f_{yy} [y - a_2] }\right)$} $p_2(x, y) = f(a_1, a_2) + f_{x} [x - a_1] + f_{y} [y - a_2] $ \v \line{$+ {1 \over 2} (f_{xx} [x - a_1]^2 + f_{xy}[x - a_1][y - a_2] + f_{yx} [x - a_1][y - a_2] + f_{yy} [y - a_2]^2) $} $p_2(x, y) = f (a_1, a_2) + f_{x}(a_1, a_2) [x - a_1] + f_{y}(a_1, a_2) [y - a_2] $ {$+ {1 \over 2} (f_{xx}(a_1, a_2) [x - a_1]^2 + f_{xy}(a_1, a_2) [x - a_1][y - a_2] + f_{yx}(a_1, a_2) [x - a_1][y - a_2] + f_{yy}(a_1, a_2) [y - a_2]^2) $} \end