A scalar field on \mathbf{R}^{n} is a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$.
Visualized by drawing graph in $\mathbf{R}^{n} \times \mathbf{R}$ or by drawing level sets in domain \mathbf{R}^{n}.

A vector field on \mathbf{R}^{n} is a function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$.
Visualized by drawing vectors in domain \mathbf{R}^{n}.
Vector Fields can represent many things

Example 1: multiple paths.

Vectors represent velocity (tangent) vectors of paths.
Defn: A flow line of a vector field $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a differentiable path $\mathbf{x}: I \subset \mathbf{R} \rightarrow \mathbf{R}^{n}$ such that

$$
\mathbf{x}^{\prime}(t)=F(\mathbf{x}(t))
$$

That is that tangent vector to \mathbf{x} at time t is $\mathbf{x}^{\prime}(t)=F(\mathbf{x}(t))$.
Ex 8 (p. 212): $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}, F(x, y)=(-y, x)$
To find flow line(s) need $\mathbf{x}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ such that $\mathbf{x}^{\prime}(t)=F(\mathbf{x}(t))$
I.e, need $\left(x^{\prime}(t), y^{\prime}(t)\right)=F(x(t), y(t))$
I.e, need $\left(x^{\prime}(t), y^{\prime}(t)\right)=(-y(t), x(t))$

That is need to solve $x^{\prime}(t)=-y(t)$ and $y^{\prime}(t)=x(t)$.
Solution: $\mathbf{x}(t)=($ acost $-b \sin t$, asint $+b \cos t)$
Check: $\mathbf{x}^{\prime}(t)=(-a \sin t-b \cos t, a \cos t-b \sin t)$
$F(\mathrm{x}(t))=$
$F(a \cos t-b \sin t, a \sin t+b \cos t)=(-a \sin t-b \cos t, a \cos t-b \sin t)$

Example 2: A vector field can represent a gradient field.

Vectors $=\nabla f$, for some scalar field f.
Defn: A gradient field on \mathbf{R}^{n} is a vector field $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $F(x, y)=\nabla f$, for some scalar field $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$
f is called the potential function for F.

Ex: $f: \mathbf{R}^{2} \rightarrow \mathbf{R}, \quad f(x, y)=x^{2}+3 y^{2}, \quad \nabla f=(2 x, 6 y)$.
$F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}, F(x, y)=(2 x, 6 y)$ is a gradient field with potential function f.

Equipotential set of $F=$ level set of f.
Thus the vector $F(x, y)$ is perpendicular to an equipotential set of $F=$ level set of f since $F(x, y)=\nabla f$ points in the direction of steepest ascent for the terrain described by the graph of f in $\mathbf{R}^{2} \times \mathbf{R}$.

Magnitude of the vector $F(x, y)$ indicate the steepness of the slope

Calc 1 Review:
Taylor's Thm for $f: \mathbf{R} \rightarrow \mathbf{R}$. Suppose $f \in C^{k}$,
Let $p_{k}(x)=f(a)+f^{\prime}(a)(x-a)+\ldots+\frac{f^{(k)}(a)}{k!}(x-a)^{k}$
Then $f(x)=p_{k}(x)+R_{k}(x, a)$ where $\lim _{x \rightarrow a} \frac{R_{k}(x, a)}{(x-a)^{k}}=0$.
Prop 1.2: If $f^{(k+1)}$ exists, then there exists c between a and x such that $R_{k}(x, a)=\frac{f^{(k+1)}(c)}{(k+1)!}(x-a)^{k+1}$
$\overline{\text { Estimate } \ln (2) \text { using degree } 3 \text { Taylor polynomial for } f(x)=\ln (x)}$ about $a=1$
$f(x)=\ln (x) \quad f^{\prime}(x)=x^{-1} \quad f^{\prime \prime}(x)=-x^{-2} \quad f^{\prime \prime \prime}(x)=2 x^{-3}$
$p_{3}(x)=$

Thus $\ln (2) \sim p_{3}(2)=$
$\ln (x)=p_{3}(x)+R_{3}(x-1)$
$f^{(4)}(x)=-6 x^{-4}=-\frac{6}{x^{4}}$
$R_{3}(x-1)=\frac{f^{(4)}(c)}{(4)!}(x-1)^{4}=$
where c is btwn 1 and 2 .
$\ln (2)=p_{3}(2)+R_{3}(2,1)=$
where $c \in(1,2)$

Multivariable version:
Taylor's Thm for $f: \mathbf{R} \rightarrow \mathbf{R}$. Suppose $f \in C^{k}$,
Let $p_{k}(\mathbf{x})=f(\mathbf{a})+\sum_{i=1}^{n} f_{x_{i}}(\mathbf{a})\left(x_{i}-a_{i}\right)+\ldots$

$$
+\frac{1}{k!} \Sigma_{i_{1}, \ldots, i_{k}=1}^{n} f_{i_{1} \ldots i_{k}}(\mathbf{a})\left(x_{i_{1}}-a_{i_{1}}\right) \ldots\left(x_{i_{k}}-a_{i_{k}}\right)
$$

Then $f(\mathbf{x})=p_{k}(\mathbf{x})+R_{k}(\mathbf{x}, \mathbf{a})$ where $\lim _{x \rightarrow a} \frac{R_{k}(x, a)}{\|x-a\|^{k}}=0$.
If $f: \mathbf{R}^{n} \rightarrow \mathbf{R} \in C^{2}$, then
$R_{1}(\mathbf{x}, \mathbf{a})=\frac{1}{2} \Sigma_{i, j=1}^{n} f_{x_{i} x_{j}}(\mathbf{c})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)$
for some \mathbf{c} on the line segment joining \mathbf{a} and \mathbf{x}.
If $f: \mathbf{R}^{n} \rightarrow \mathbf{R} \in C^{k+1}$, then
$\left(\mathrm{x}_{i_{k+1}}-a_{i_{k+1}}\right)$
$R_{k}(\mathbf{x}, \mathbf{a})=\frac{1}{(k+1)!} \sum_{i_{1}, \ldots, i_{k+1}=1}^{n} f_{x_{i_{1}} \ldots x_{i_{k+1}}}(\mathbf{c})\left(x_{i_{1}}-a_{i_{1}}\right) \ldots\left(x_{i_{k+1}}-a_{i_{k+1}}\right)$
for some \mathbf{c} on the line segment joining \mathbf{a} and \mathbf{x}.

