\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\t{{\theta}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -5pt} Let $p: \R^2 \rightarrow \R^2$, $p(r, \t) = (r cos \t, r sin \t)$. Then $Dp(r, \t) = \left(\matrix{cos \t & -rsin \t \cr sin \t & r cos \t }\right) $ Let $f: \R^2 \rightarrow \R$, $f(x, y) = x^2 + y^2 + 3y$ $(f \circ p)(r, \t) = f(p(r, \t)) = f(r cos \t, r sin \t) $ \rightline{$= r^2cos^2 \t + r^2 sin^2\t + 3rsin\t = r^2 + 3rsin\t $} {\bf Note we used the function $p$ to convert $x^2 + y^2 + 3y$ into polar coordinates.} \vskip 5pt \hrule Use the chain rule to calculate $D(f \circ p)(r, \t)$: $f(x, y) = x^2 + y^2 + 3y$. Thus, $Df(x, y) = \left(\matrix{2x & 2y +3}\right) $ $D(f \circ p)(r, \t) = (Df)(p(r, \t)) Dp(r, \t)$ \rightline{$= \left(\matrix{2rcos\t & 2rsin\t + 3}\right) \left(\matrix{cos \t & -rsin \t \cr sin \t & r cos \t }\right) =$} {$\left(\matrix{2rcos^2\t + 2rsin^2\t + 3sin\t~ & ~-2r^2sin\t cos\t + 2r^2sin\t cos \t + 3r cos\t }\right) $} \vskip 10pt \rightline{$= \left(\matrix{2r+ 3sin\t ~& ~ 3r cos\t }\right) $} \vskip 5pt \hrule $D(f \circ p)(r, \t) = (Df)(p(r, \t)) Dp(r, \t)$ \rightline{$= \left(\matrix{ {\partial f \over \partial x} & {\partial f \over \partial y} }\right) \left(\matrix{cos \t & -rsin \t \cr sin \t & r cos \t }\right) $} \vskip 10pt \centerline{$= \left(\matrix{ {\partial f \over \partial x}cos \t + {\partial f \over \partial y} sin \t & -{\partial f \over \partial x} rsin \t + {\partial f \over \partial y} r cos \t }\right) $} \eject \centerline{ $ {\partial \over \partial r} = cos \t {\partial \over \partial x} + sin \t {\partial \over \partial y} $} \centerline{$ {\partial \over \partial \t} = - rsin \t {\partial \over \partial x} + r cos \t {\partial \over \partial y} $} \vfill $\left(\matrix{cos \t & sin \t & {\partial \over \partial r} \cr -rsin \t & r cos \t & {\partial \over \partial \t} }\right) $ $\rightarrow$ $\left(\matrix{rcos \t sin \t & rsin^2 \t & rsin \t{\partial \over \partial r} \cr -rcos \t sin \t & r cos^2 \t & cos \t{\partial \over \partial \t} }\right) $ $\rightarrow$$\left(\matrix{rcos \t sin \t & rsin^2 \t & rsin \t{\partial \over \partial r} \cr 0 & r & cos \t{\partial \over \partial \t} + rsin \t{\partial \over \partial r} }\right) $ $\rightarrow$$\left(\matrix{cos \t & sin \t & {\partial \over \partial r} \cr 0 & 1 & {cos \t \over r}{\partial \over \partial \t} + sin \t{\partial \over \partial r} }\right) $ $\rightarrow$$\left(\matrix{cos \t & 0 & {\partial \over \partial r} -sin \t [{cos \t \over r}{\partial \over \partial \t} + sin \t{\partial \over \partial r} ] \cr 0 & 1 & {cos \t \over r}{\partial \over \partial \t} + sin \t{\partial \over \partial r} }\right) $ $\rightarrow$$\left(\matrix{cos \t & 0 & {\partial \over \partial r} -sin \t {cos \t \over r}{\partial \over \partial \t} - sin^2 \t{\partial \over \partial r} \cr 0 & 1 & {cos \t \over r}{\partial \over \partial \t} + sin \t{\partial \over \partial r} }\right) $ $\rightarrow$$\left(\matrix{cos \t & 0 & -sin \t {cos \t \over r}{\partial \over \partial \t}+ (1 - sin^2 \t){\partial \over \partial r} \cr 0 & 1 & {cos \t \over r}{\partial \over \partial \t} + sin \t{\partial \over \partial r} }\right) $$\rightarrow$ $\left(\matrix{cos \t & 0 & -sin \t {cos \t \over r}{\partial \over \partial \t}+ cos^2 \t{\partial \over \partial r} \cr 0 & 1 & {cos \t \over r}{\partial \over \partial \t} + sin \t{\partial \over \partial r} }\right) $$\rightarrow$ $\left(\matrix{1 & 0 & {-sin \t \over r}{\partial \over \partial \t}+ cos \t{\partial \over \partial r} \cr 0 & 1 & {cos \t \over r} {\partial \over \partial \t} + sin \t{\partial \over \partial r} }\right) $ \vfill \centerline{${\partial \over \partial x} = cos \t{\partial \over \partial r} - {sin \t \over r}{\partial \over \partial \t}$} \centerline{${\partial \over \partial y} = sin \t{\partial \over \partial r} + {cos \t \over r} {\partial \over \partial \t} $} \end \left(\matrix{}\right)