\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 10.7truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -5pt} 2.4 Higher order derivatives: ${\partial^2 f \over \partial x_{i_1} \partial x_{i_2}} = {\partial \over \partial x_{i_1} }( {\partial \over \partial x_{i_2}}(f))$ Ex: Let $f(x, y, z) = x^2ln(yz)$ ${\partial f \over \partial x}$ = \hfill ${\partial f \over \partial y}$ = \hfill ${\partial f \over \partial z}$ = \hfil~~~~~~~~ ${\partial^2 f \over \partial x^2} = $ \hfill ${\partial^2 f \over \partial x \partial y} =$\hfill ${\partial^2 f \over \partial z \partial y} =$\hfil~~~~~~~~ ${\partial^3 f \over \partial x^3} = $ \hfill ${\partial^3 f \over \partial x^2 \partial z} = $ \hfill ${\partial^3 f \over \partial x \partial y \partial z} =$\hfil~~~~~~~ \vskip 5pt \hrule Defn: Let $V$ be a nonempty open subset of $R^n$, $f: V \rightarrow R^m$, $p \in {\N}$. \u i.) $f$ is $C^p$ on $V$ is each partial derivative of order $k \leq p$ exists and is continuous on $V$. ii.) $f$ is $C^\infty$ on $V$ if $f$ is $C^p$ on $V$ for all $p \in {\N}$ ($f$ is {\it smooth}). Ex: $g(x, y) = (x + y, x)$ \vfill \vfill \vfill \vfill Cor 1.7 If $f \in C^r$ on $U$, then ${\partial^k f \over \partial x_{i_1} \partial x_{i_2} ... \partial x_{i_k} }$ = ${\partial^k f \over \partial x_{j_1} \partial x_{j_2} ... \partial x_{j_k} }$ where $(j_1, j_2, ... , j_k)$ is a permutation of $(i_1, i_2, ... , i_k)$ \end