Calculus I review:

Suppose \(f : \mathbb{R} \rightarrow \mathbb{R} \).

Recall the tangent line to \(y = f(x) \) at \(x = a \) is
\[
y = f(a) + f'(a)(x - a).
\]

Thus \(y = f(a) + f'(a)(x - a) \) is the best linear approximation of \(f \) near \(x = a \).

Ex: Find the best linear approximation for \(f(x) = 2x + 5 \).

Answer:

Note slope = \(f'(x) = 2 \).

Ex: Find the best linear approximation for \(h(x) = x^2 \) at \(x = 3 \).

\[h'(x) = 2x. \]

Thus slope of tangent line at \(x = 3 \) is \(h'(3) = 2(3) = 6 \).

Hence \(\frac{y - 9}{x - 3} = 6 \)

Equation of tangent line: \(y = 9 + 6(x - 3) \)

Estimate \(h(3.1) \):
The gradient of \(f : \mathbb{R}^n \to \mathbb{R}^1 \) is denoted by

\[
\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \ldots, \frac{\partial f}{\partial x_n}(a) \right)
\]

Defn: The Jacobian matrix of \(f : \mathbb{R}^n \to \mathbb{R}^m \) at \(a \) is

\[
Df(a) = \left[\frac{\partial f_i}{\partial x_j}(a) \right]_{m \times n} = \\
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(a) & \ldots & \frac{\partial f_1}{\partial x_n}(a) \\
\vdots & \ddots & \vdots \\
\vdots & & \ddots \\
\frac{\partial f_m}{\partial x_1}(a) & \ldots & \frac{\partial f_m}{\partial x_n}(a)
\end{bmatrix}
\]

Thm: If \(f \) is differentiable at \(a \), then

1.) \(f \) is continuous at \(a \).

2.) \(\frac{\partial f_i}{\partial x_j} \) exists at \(a \) for all \(i, j \).

3.) The derivative of \(f \) at \(a = Df(a) = \) the Jacobian matrix of \(f \) at \(a \).

Thm: Let \(f : \mathbb{R}^n \to \mathbb{R}^m \), \(f = (f_1, \ldots, f_m) \). If \(\frac{\partial f_i}{\partial x_j} \) exists and are continuous in a neighborhood of \(a \) for all \(i, j \), then \(f \) is differentiable at \(a \).