Thm: If \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is differentiable at \(a \), then \(f \) is differentiable at \(a \).

Thm: Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(f = (f_1, \ldots, f_m) \). \(f \) is differentiable at \(a \) iff \(f_i : \mathbb{R}^n \rightarrow \mathbb{R} \) is differentiable at \(a \) for all \(i = 1, \ldots, m \).

Thm: Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(f = (f_1, \ldots, f_m) \). If \(\frac{\partial f_i}{\partial x_j} \) exists and are continuous in a neighborhood of \(a \) for all \(i, j \), then \(f \) is differentiable at \(a \).

Ex: Is \(f(x, y) = x^2 y \) differentiable at \((3, 1)\).

Find the equation of the tangent plane to \(f(x, y) = x^2 y \) at \((3, 1)\).

Estimate \(f(3.1, .9) \)