\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \vsize 9.5truein \input ../../../PAPERS/GOLD/psfig \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\a{{\bf a}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -5pt} \def\v{{\bf v}} \def\w{{\bf w}} %%\input amsmath %%\usepackage{amssymb} %%\def\R{\mathbb{R}} {\bf 1.1} Vectors: Let ${\bf v} = \left(\matrix{1 \cr 2}\right)$. \vskip -1.1in \rightline{\psfig{figure=graph.eps,width=2truein} \hskip 0.3in \psfig{figure=graph.eps,width=2truein}} If $\v$ = velocity in m/sec of an object, then the object is moving east at a rate of 1 m/sec and north at a rate of 2m/sec Speed of the object = \vfill A vector can be described by its Euclidean coordinates OR by its length and direction. Let ${\bf w} = \left(\matrix{3 \cr -1}\right)$. Then $\v + \w = \left(\matrix{1 \cr 2}\right) + \left(\matrix{3 \cr -1}\right) = $ \centerline{\psfig{figure=graph.eps,width=2truein} \hskip 0.3in \psfig{figure=graph.eps,width=2truein} \hskip 0.3in \psfig{figure=graph.eps,width=2truein}} $\v - \w = \left(\matrix{1 \cr 2}\right) - \left(\matrix{3 \cr -1}\right) $ = \centerline{\psfig{figure=graph.eps,width=2truein} \hskip 0.3in \psfig{figure=graph.eps,width=2truein} \hskip 0.3in \psfig{figure=graph.eps,width=2truein}} \eject {\bf 2.1} Let $f: X \rightarrow Y$ where $X \subset \R^n$, $Y \subset \R^m$ Graph of $f = \{ (\x, f(\x)) ~|~ \x \in X \} \subset \R^n \times \R^m$ Domain of $f = X$, \hfil Codomain of $f = Y$ Range of $f$ = Image of $f = f(X)$ \rightline{$ = \{y \in Y ~|~ $ there exists $x \in X$ such that $f(x) = y\}$.} \vskip 5pt \hrule \vskip -5pt $f$ is a function if for all $x$ in domain of $f$, $f(x)$ has a unique value. \centerline{I.e, for all $x, y \in X$, if $x = y$, then $f(x) = f(y)$} \centerline{and for all $x \in X$, $f(x)$ is defined.} \vfill \vskip 5pt \hrule \vskip -5pt $f$ is 1:1 if $f(x) = f(y)$ implies $x = y$. \hskip 20pt $f$ gives a one-to-one correspondence between $X$ and $f(X)$. \hskip 20pt Given $b \in Y$, $f(x) = b$ has at most one solution \hskip 40pt Side-note: $f(x) = b$ has exactly one solution if $b \in f(X)$. . \hskip 40pt Side-note: $f(x) = b$ has no solution if $b \not\in f(X)$. \vfill \vskip 5pt \hrule \vskip -5pt $f$ is onto if $f(X) = Y$ (i.e., image of $f$ = codomain of $f$). \hskip 20pt Given $b \in Y$, $f(x) = b$ has at least one solution. \eject %%\vskip 5pt %%\hrule %%\vskip -5pt \parskip 12pt Ex 1: $f:\R^n \rightarrow \R$, $f(\x) = ||\x|| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$ \hskip 20pt Domain = \hskip 40pt Codomain = \hskip 40pt Image = \hskip 20pt Is $f$ 1:1? \hskip 30pt Proof: \vskip 10pt \hskip 20pt Is $f$ onto? \hskip 30pt Proof: \vskip 10pt \hskip 30pt Alternate Proof: \vskip 10pt \vfil Ex 2: $g(x, y) = (x^2y, x^4 - y, x^6)$ \hskip 20pt Domain = \hskip 40pt Codomain = \hskip 40pt \hskip 20pt Is $g$ 1:1? \hskip 30pt Proof: \vskip 10pt \hskip 20pt Is $g$ onto? \hskip 30pt Proof: \eject \parskip 15pt Ex 3: $h(\x) = \left(\matrix{1 & 2 & 3 \cr 4 & 5 & 6}\right)\left(\matrix{x \cr y \cr z }\right)$ \hskip 20pt I.e, $h(\x) = (x + 2y + 3z, 4x +5y + 6z)$. \hskip 20pt Domain = \hskip 40pt Codomain = \hskip 40pt Image = \hskip 20pt Is $h$ onto? \hskip 80pt Is $h$ 1:1? How many solutions does $h(\x) = {\bf b}$ have? I.e., how many solutions does $\left(\matrix{1 & 2 & 3 \cr 4 & 5 & 6}\right)\left(\matrix{x \cr y \cr z }\right) = \left(\matrix{b_1 \cr b_2 }\right)$ have? I.e, how many solutions does the following system of equations have: \u\u \hskip 60pt $x + 2y + 3z = b_1$, \u \hskip 60pt $4x +5y + 6z = b_2$. Does $\left(\matrix{1 \cr 4 }\right) x + \left(\matrix{2 \cr 5 }\right)y + \left(\matrix{3 \cr 6 }\right)z$ span all of $\R^2$? Is $\{ \left(\matrix{1 \cr 4 }\right), \left(\matrix{2 \cr 5 }\right), \left(\matrix{3 \cr 6 }\right) \}$ linearly independent? \eject Definitions: \vskip -5pt If the codomain of $f$ is $\R$ (i.e., $f: X \rightarrow \R$), we say that $f$ is {\it real-valued} or {\it scalar valued}. Suppose $f: X \subset \R^2 \rightarrow \R$ and $c$ is a constant scalar. The {\it level curve at height $c$ of $f$} is the curve in $\R^2$ defined by $f(x, y) = c$. That is, \rightline{the level curve at height $c$ of $f = \{(x, y) \in \R^2 ~|~ f(x, y) = c\}$.} The {\it contour curve at height $c$ of $f$} is the curve in $\R^3$ defined by the two equations, $z = f(x, y), z = c$. That is, \centerline{the contour curve at height $c$ of $f = $} \rightline{ $= \{(x, y, z) \in \R^2 ~|~ z = f(x, y) = c\}$} \rightline{$= \{(x, y, f(x, y)) \in \R^3 ~|~ f(x, y) = c\}$.} Recall the graph of $f = \{ (x, y, z) ~|~ z = f(x, y) \}$ \rightline{$= \{ (x, y, f(x, y)) ~|~ (x, y) \in X \}$$\subset \R^2 \times \R$} The {\it section of the graph of $f$ by the plane $x = c$} is the set of points in $\R^3$ defined by the two equations, $z = f(x, y), x = c$. That is, \centerline{the section by $x = c$ is $ \{(x, y, z) \in \R^2 ~|~ z = f(x, y), x = c\}$} \rightline{$= \{(c, y, f(c, y)) \in \R^3 ~|~ (c, y) \in X \}$.} The section by $y = c$ is $ \{(x, y, z) \in \R^2 ~|~ z = f(x, y), y = c\}$ \rightline{$= \{(x, c, f(x, c)) \in \R^3 ~|~ (x,c) \in X \}$.} \end