\magnification 1600 \parindent 0pt \parskip 7.5pt \pageno=1 \hsize 7.9truein \hoffset -0.75truein %%\voffset -0.1truein \vsize 9.5truein \def\u{\vskip -10pt} \def\v{\vskip 5pt} \def\s{\vskip -5pt} \def\r{\vskip -4pt} $\matrix{ &~~ f: {\bf R} \rightarrow {\bf R} ~~~~~~ & g: [0, \infty) \rightarrow {\bf R} ~~~~~~ & h: [0, \infty) \rightarrow [0, \infty) \cr & f(x) = x^2 & g(x) = x^2 & h(x) = x^2 \cr ~& & & \cr 1:1& & & \cr x_1 \not= x_2 & & & \cr \hbox{ then }& & & \cr f(x_1) \not= f(x_2)& & & \cr ~& & & \cr \hbox{ not }1:1 & & & \cr \hbox{ there exists }& & & \cr x_1 \not= x_2 & & & \cr \hbox{ such that } & & & \cr f(x_1) = f(x_2)& & & \cr ~& & & \cr ~& & & \cr onto& & & \cr range = codomain& & & \cr ~& & & \cr not ~onto& & & \cr range \not= codomain& & & \cr ~& & & \cr ~& & & \cr invertible& & & \cr & & & \cr & & & \cr }$ Defn: Suppose $f: A \rightarrow B$ is 1:1 function where $A$ = domain, $B$ = range, then \hfil \break its inverse function $f^{-1}:B \rightarrow A$ exists and is defined by \centerline{ $f^{-1}(b) = a$ if and only if $f(a) = b$.} \end{document}