$$
\begin{array}{rrr}
f: \mathbf{R} \rightarrow \mathbf{R} & g:[0, \infty) \rightarrow \mathbf{R} & h:[0, \infty) \rightarrow[0, \infty) \\
f(x)=x^{2} & g(x)=x^{2} & h(x)=x^{2}
\end{array}
$$

1:1
$x_{1} \neq x_{2}$
then
$f\left(x_{1}\right) \neq f\left(x_{2}\right)$
not $1: 1$
there exists
$x_{1} \neq x_{2}$
such that
$f\left(x_{1}\right)=f\left(x_{2}\right)$
onto
range $=$ codomain
not onto
range \neq codomain
invertible

Defn: Suppose $f: A \rightarrow B$ is 1:1 function where $A=$ domain, $B=$ range, then its inverse function $f^{-1}: B \rightarrow A$ exists and is defined by

$$
f^{-1}(b)=a \text { if and only if } f(a)=b .
$$

