\input epsf \input graphicx \magnification 2200 \hsize 7truein \vsize 10truein \hoffset -0.5truein \voffset -0.2truein \nopagenumbers \parskip 10pt \parindent 0 pt \def\u{\vskip -10pt} \def\v{\vskip 10pt} \def\s{\vskip 3pt} Suppose $f$ integrable\hfil \break (Note $f$ continuous implies $f$ integrable). \u Suppose $a = x_0 < x_1 < x_2 < .... x_{n-1} < x_n = b$, $\Delta x = x_i - x_{i-1}$ \v \centerline{$\int_a^b f(x) dx = lim _{n \rightarrow \infty} \Sigma_{i = 1}^n f(x_i^*) \Delta x$ } \s If $n$ equal subdivisions: $\Delta x = {b - a \over n}$ and if we use right-hand endpoints: $x_i^* = x_i$ \v \centerline{$\int_a^b f(x) dx = lim _{n \rightarrow \infty} \Sigma_{i = 1}^n f(x_i) {b - a \over n}$ } \v \hrule The Fundamental Theorem of Calculus: Suppose $f$ continuous on $[a, b]$. 1.) If $g(x) = \int_a^x f(t) dt$, then $g'(x) = f(x)$. 2.) $\int_a^b f(t) dt = F(b) - F(a)$ where $F$ is any antiderivative of $f$, that is $F' = f$. The Fundamental Theorem of Calculus: Suppose $f$ continuous on $[a, b]$. 1.) If ${d \over dx}[ \int_a^x f(t) dt] = f(x)$. 2.) $\int_a^b F'(t) dt = F(b) - F(a)$. \v %%\hrule Examples: \vskip -3pt 1.) If $g(x) = \int_0^x t^2 dt$, then $g'(x) = \underline{\hskip 1in}$. 2.) If $g(x) = \int_5^x t^2 dt$, then $g'(x) = \underline{\hskip 1in}$. 3.) If $g(x) = \int_-2^x sin(t^2) dt$, then $g'(x) = \underline{\hskip 1in}$. 4.) If $g(x) = \int_4^x tan({t^3 \over t+ 1}) dt$, then $g'(x) = \underline{\hskip 1in}$. 5.) If $g(x) = \int_1^x \sqrt{3t - 5} dt$, then $g'(x) = \underline{\hskip 1in}$. Examples: \vskip -5pt 1.) If $g(x) = \int_0^{x^3} t^2 dt$, then $g'(x) = \underline{\hskip 1in}$. 2.) If $g(x) = \int_5^{x^3} t^2 dt$, then $g'(x) = \underline{\hskip 1in}$. 3.) If $g(x) = \int_2^{ln(x)} {t \over t+1} dt$, then $g'(x) = \underline{\hskip 1in}$. 4.) If $g(x) = \int_3^{1 \over x} sec(t) dt$, then $g'(x) = \underline{\hskip 1in}$. Evaluate the limit by recognizing the sum as a Riemann sum for a function defined on [0, 1] 1.) $lim _{n \rightarrow \infty} \Sigma_{i = 1}^n sin({i \over n}){1 \over n}$ 2.) $lim _{n \rightarrow \infty} \Sigma_{i = 1}^n {i^5 \over n^6}$ %%3.) $lim _{n \rightarrow \infty} \Sigma_{i = 1}^n sin({i \over n}){1 \over n}$ \end