Suppose $c \in \mathcal{R}$ and suppose $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Then $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$ $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if $\lim_{x \to a} g(x) \neq 0$ Defn: f is continuous at aiff $\lim_{x \to a} f(x) = f(\lim_{x \to a} x) =$

If f is continuous then $lim_{x \to a} f(g(x)) = f(lim_{x \to a}g(x))$ Theorem: If $f(x) \leq g(x)$ near a (except possibly at a) and if $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then

$$lim_{x \to a} f(x) \le lim_{x \to a} g(x)$$

Squeeze theorem: If $f(x) \le g(x) \le h(x)$ near a (except possibly at a) and if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} h(x) = L$, then $\lim_{x\to a} g(x) = L$

Example:
$$g(x) = x \sin \frac{1}{x}$$

Defn: $lim_{x\to a}f(x) = L$ if

x close to a (except possibly at a) implies f(x) is close to L.

Defn: $lim_{x\to a}f(x) = L$ if

x close to a (except possibly at a) implies f(x) is close to L. Defn: $\lim_{x \to a} f(x) = L$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Show $lim_{x\to 1}2 =$

Defn: $\lim_{x\to a} f(x) = L$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Show $lim_{x \to 4}2x + 3 =$

Defn:
$$\lim_{x \to a^-} f(x) = L$$
 if

x close to a and x < aimplies f(x) is close to L.

Defn: $\lim_{x \to a^+} f(x) = L$ if

x close to a and x > aimplies f(x) is close to L.

Defn: $\lim_{x \to a} f(x) = \infty$ if

x close to a (except possibly at a) implies f(x) is large.

Defn: $\lim_{x \to a} f(x) = -\infty$ if

x close to a (except possibly at a) implies f(x) is negative and |f(x)| is large.