2.3

Suppose $c \in \mathcal{R}$ and suppose
$\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then
$\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
$\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
$\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
Defn: f is continuous at a
iff $\lim _{x \rightarrow a} f(x)=f\left(\lim _{x \rightarrow a} x\right)=$
If f is continuous then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Theorem: If $f(x) \leq g(x)$ near a (except possibly at $a)$ and if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Squeeze theorem:
If $f(x) \leq g(x) \leq h(x)$ near a (except possibly at a) and if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$

Example: $\quad g(x)=x \sin \frac{1}{x}$

Defn: $\lim _{x \rightarrow a} f(x)=L$ if
x close to a (except possibly at a)
implies $f(x)$ is close to L.

Defn: $\lim _{x \rightarrow a} f(x)=L$ if
x close to a (except possibly at a)
implies $f(x)$ is close to L.

Defn: $\lim _{x \rightarrow a} f(x)=L$ if
for all $\epsilon>0$, there exists a $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$

Show $\lim _{x \rightarrow 1} 2=$

Defn: $\lim _{x \rightarrow a} f(x)=L$ if
for all $\epsilon>0$, there exists a $\delta>0$ such that
$0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon$
Show $\lim _{x \rightarrow 4} 2 x+3=$

Defn: $\lim _{x \rightarrow a^{-}} f(x)=L$ if
x close to a and $x<a$ implies $f(x)$ is close to L.

Defn: $\lim _{x \rightarrow a^{+}} f(x)=L$ if
x close to a and $x>a$ implies $f(x)$ is close to L.

Defn: $\lim _{x \rightarrow a} f(x)=\infty$ if
x close to a (except possibly at a)
implies $f(x)$ is large.

Defn: $\lim _{x \rightarrow a} f(x)=-\infty$ if
x close to a (except possibly at a) implies $f(x)$ is negative and $|f(x)|$ is large.

