All problems required on this part of the exam.
1.) Suppose $f(x)=2 x^{2}-x+1$ and $g(x)=x^{2}+2 x+5$.
$2 x^{2}-x+1=x^{2}+2 x+5$
$x^{2}-3 x-4=0$
$(x+1)(x-4)=0$. Hence $x=-1,4$
Take $0 \in(-1,4)$
$x=0: 2 x^{2}-x+1=1$
$x=0: x^{2}+2 x+5=5$
Hence $x^{2}+2 x+5>2 x^{2}-x+1$ on $(-1,4)$
[3] 1a.) Set up, but do NOT evaluate, an integral for the area of the region enclosed by f and g.
height $=x^{2}+2 x+5-\left(2 x^{2}-x+1\right)=-x^{2}+3 x+4$, width $=d x$
Area $=\int_{-1}^{4}\left(-x^{2}+3 x+4\right) d x$
[4] 1b.) Set up, but do NOT evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curves f and g about the line $x=9$ (hint: use cylindrical shells).

Area $=2 \pi r h, h=x^{2}+2 x+5-\left(2 x^{2}-x+1\right)=-x^{2}+3 x+4, r=9-x$,
Area $=2 \pi(9-x)\left(-x^{2}+3 x+4\right)$
width or thickness of cylindrical shell $=d x$.
Volume $=2 \pi \int_{-1}^{4}(9-x)\left(-x^{2}+3 x+4\right) d x$
[4] 1c.) Set up, but do NOT evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curves f and g about the line $y=-2$ (hint: use washers).

Area $=\pi\left(R^{2}-r^{2}\right), R=x^{2}+2 x+5-(-2)=x^{2}+2 x+7, r=2 x^{2}-x+1-(-2)=2 x^{2}-x+3$
width or thickness of washer $=d x$.
Volume $=\pi \int_{-1}^{4}\left[\left(x^{2}+2 x+7\right)^{2}-\left(2 x^{2}-x+3\right)^{2}\right] d x$
[1] 2.) If $h(x)=x^{2}$, then the slope of the tangent line at the point $(2,4)$ is $\underline{4}$
$h^{\prime}(x)=2 x, h^{\prime}(2)=2(2)=4$
[10] 3.) Find the derivative of $g(x)=\sqrt{\frac{\ln (\sin (x))}{x+1}}$
Answer 3.) $\frac{\frac{1}{2}\left[\frac{\ln (\sin (x))}{x+1}\right]^{\frac{-1}{2}}\left[\frac{(x+1)\left(\frac{1}{\sin (x)}\right) \cos (x)-\ln (\sin (x))(1)}{(x+1)^{2}}\right]}{}$
4.) Find the following integrals:

Note typo: the bottom should be $\sqrt{\sin (x)+4}$
$[10] \quad$ a.) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{\sin (x)+4}} d x=\underline{2 \sqrt{5}-4}$
let $u=\sin (x)+4$
$d u=\cos (x) d x$
$x=0: u=\sin (0)+4=0+4=4$
$x=\frac{\pi}{2}: u=\sin \left(\frac{\pi}{2}\right)+4=1+4=5$
$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{\sin (x)+4}} d x=\int_{4}^{5} \frac{d u}{u^{\frac{1}{2}}}=\int_{4}^{5} u^{\frac{-1}{2}} d u=\left.2 u^{\frac{1}{2}}\right|_{4} ^{5}=2[\sqrt{5}-\sqrt{4}]=2[\sqrt{5}-2]=2 \sqrt{5}-4$
[3] b.) $\int \frac{5}{1+x^{2}} d x=5 \tan ^{-1}(x)+C \quad$ (from table)

Note typo: Should be right-handed limit.
[10] 5.) Find the following limit (SHOW ALL STEPS): $\lim _{x \rightarrow 0^{+}}(3 x+1)^{\frac{1}{x^{2}}}=\underline{+\infty}$ $\lim _{x \rightarrow 0^{+}}(3 x+1)^{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} e^{\ln \left[(3 x+1)^{\frac{1}{x^{2}}}\right]}$
$\lim _{x \rightarrow 0^{+}} \ln \left[(3 x+1)^{\frac{1}{x^{2}}}\right]=\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}} \ln (3 x+1)=\lim _{x \rightarrow 0^{+}} \frac{\ln (3 x+1)}{x^{2}} \quad\left(" \frac{0}{0} "\right)$
$=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{3 x+1}(3)}{2 x} \quad$ (by l'Hospital's rule)
$=\lim _{x \rightarrow 0^{+}} \frac{3}{(3 x+1) 2 x}=+\infty$
$\lim _{x \rightarrow 0^{+}}(3 x+1)^{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} e^{\ln \left[(3 x+1)^{\frac{1}{x^{2}}}\right]}=e^{\lim m_{x \rightarrow 0^{+}} \ln \left[(3 x+1)^{\frac{1}{x^{2}}}\right]}=+\infty$
6.) Find the following for $f(x)=x e^{-2 \sqrt{x}}$ (if they exist; if they don't exist, state so). Use this information to graph f.

Note $f^{\prime}(x)=e^{-2 \sqrt{x}}(1-\sqrt{x})$ and $f^{\prime \prime}(x)=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}\left(\sqrt{x}-\frac{3}{2}\right)$ and $\lim _{x \rightarrow \infty} x e^{-2 \sqrt{x}}=0$
[1] 6a.) critical numbers: $x=1$
[1] 6b.) local maximum(s) occur at $x=\underline{x=1}$
[1] 6c.) local minimum(s) occur at $x=\underline{\text { none }}$
[1] 6d.) The global maximum of f on the interval $[0,5]$ is $\underline{e^{-2}}$ and occurs at $x=\underline{1}$
[1] 6e.) The global minimum of f on the interval $[0,5]$ is $\underline{0}$ and occurs at $x=\underline{0}$ (since $f(0)=0, f(1)=e^{-2}, f(5)=5 e^{-2 \sqrt{5}}$
[1] 6f.) Inflection point(s) occur at $x=\underline{9}$
[1] 6g.) f increasing on the intervals $[0,1)$
[1] 6h.) f decreasing on the intervals $\underline{(1, \infty)}$
[1] 6i.) f is concave up on the intervals $\left[\frac{9}{4}, \infty\right)$
[1] 6 j.$) f$ is concave down on the intervals $\left(0, \frac{9}{4}\right)$
[1] 6 k.$)$ What is the domain of $f ? \underline{[0, \infty)}$
[1] 61.) What is the range of f ? $\left[0, e^{-2}\right]$
[4] 6m.) Graph f

Final Exam PART B, Dec., 2005
SHOW ALL WORK
Math 25 Calculus I Either circle your answers or place on answer line.
Choose 4 out of the following 5 problems: Clearly indicate which 4 problems you choose. Each problem is worth 10 points You may do all the problems for up to five points extra credit.

I have chosen the following 4 problems: \qquad
A.) Given the graph of $y=g(x)$ below, draw the following graphs:

$y=g(x-1)$

$y=g^{-1}(x)$

$y=\frac{1}{g(x)}$

$y=g^{\prime}(x)$

B.) Use calculus to show that the equation $x^{9}+4 x^{3}+10 x=0$ has at most one real root.

Let $f(x)=x^{9}+4 x^{3}+10 x$
Suppose $f(x)$ has two real roots. I.e, there exists $a, b, a \neq b$ such that $f(a)=0=f(b)$.
By the Mean Value Theorem (or Rolle's Thm), there exists c between a and b such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0$

Since $f(x)=x^{9}+4 x^{3}+10 x, f^{\prime}(x)=9 x^{8}+12 x^{2}+10$.
Thus $0=f^{\prime}(c)=9 c^{8}+12 c^{2}+10$. But $9 c^{8}+12 c^{2}+10>0$.
Hence $f(x)$ has at most one real root.
[Note: could use the intermediate value thm (IVT) to show there is at least one real root, but the question didn't ask if there was a root. It only asked if there was more than one real root).
C.) Express the following integral as a limit of Riemann sums. Do not evaluate the limit: $\int_{2}^{8}(x+1) \sin (3 x) d x$.
$\Delta x=\frac{8-2}{n}=\frac{6}{n}=$ width
$x_{i}=2+\frac{6 i}{n}$. Thus $f\left(x_{i}\right)=\left(2+\frac{6 i}{n}+1\right) \sin \left(3\left(2+\frac{6 i}{n}\right)\right)=\left(3+\frac{6 i}{n}\right) \sin \left(6+\frac{18 i}{n}\right)=$ height
Answer C.) $\underline{\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(3+\frac{6 i}{n}\right) \sin \left(6+\frac{18 i}{n}\right)\right] \frac{6}{n}}$
D.) Water is leaking out of an inverted conical tank at a rate of $30 \mathrm{~m}^{3} / \mathrm{sec}$ at the same time that water is being pumped into the tank at a constant rate. The tank has height 10 m and the diameter at the top is 6 m . If the water level is rising at a rate of $4 \mathrm{~m} / \mathrm{sec}$ when the height of the water is 5 m , find the rate at which water is pumped into the tank.
$V=\frac{1}{3} \pi r^{2} h, \frac{d V}{d t}=\frac{d V_{\text {in }}}{d t}-\frac{d V_{\text {out }}}{d t}=\frac{d V_{\text {in }}}{d t}-30$
$\frac{d h}{d t}=4$. When $h=5, \frac{d V_{i n}}{d t}=$?
$\frac{r}{h}=\frac{3}{10}$. Hence $r=\frac{3 h}{10}$
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{3 h}{10}\right)^{2} h=\frac{3 \pi h^{3}}{100}$.
Thus $\frac{d V}{d t}=\frac{9 \pi}{100} h^{2} \frac{d h}{d t}=\frac{9 \pi}{100}(5)^{2}(4)=9 \pi$
Answer D.) $(9 \pi+30) m^{3} / s e c$
E.) Use calculus to find the point on the line $y=2 x+8$ that is closest to the point $(4,3)$. Explain why your answer is optimal.
minimize $d(x)=\sqrt{(x-4)^{2}+(2 x+8-3)^{2}}=\sqrt{(x-4)^{2}+(2 x+5)^{2}}$
$d^{\prime}(x)=\frac{1}{2}\left[(x-4)^{2}+(2 x+5)^{2}\right]^{\frac{-1}{2}}[2(x-4)+2(2 x+5)(2)]=\frac{2(x-4)+2(2 x+5)(2)}{2\left[(x-4)^{2}+(2 x+5)^{2}\right]^{\frac{1}{2}}}=\frac{2 x-8+8 x+20}{2\left[(x-4)^{2}+(2 x+5)^{2}\right]^{\frac{1}{2}}}$
$=\frac{10 x+12}{2\left[(x-4)^{2}+(2 x+5)^{2}\right]^{\frac{1}{2}}}=$
Hence $d^{\prime}(x)$ exists everywhere and if $d^{\prime}(x)=0$, then $x=-\frac{12}{10}$
If $x<-\frac{12}{10}$, then $d^{\prime}(x)<0$. If $x>-\frac{12}{10}$, then $d^{\prime}(x)>0$. Hence d is a decreasing function on $\left(-\infty,-\frac{12}{10}\right)$ and is an increasing function on $\left(-\frac{12}{10}, \infty\right)$. Thus the minimum distance occurs when $x=-\frac{12}{10}$

When $x=-\frac{12}{10}, y=2\left(\frac{-12}{10}\right)+8=\frac{-12}{5}+\frac{40}{5}=\frac{28}{5}$

Answer E.) $\left(-\frac{12}{10}, \frac{28}{5}\right)$

