[14] 1.) Given \(y = (x^2 + 1)^x \), find \(y' \). Simplify your answer.

\[
(x^2 + 1)^x = e^{x \ln(x^2 + 1)} = e^{x \ln(x^2 + 1)}
\]

\[
y' = e^{x \ln(x^2 + 1)} \left[x \left(\frac{1}{x^2 + 1} \right) (2x) + \ln(x^2 + 1) \right]
\]

\[
= (x^2 + 1)^x \left[\frac{2x^2}{x^2 + 1} + \ln(x^2 + 1) \right]
\]

Answer 1.) \((x^2 + 1)^{x-1} (2x^2) + (x^2 + 1)^x \ln(x^2 + 1) \)

[13] 2.) Given \(y x^2 + 10 = y^3 \), find \(y'' \). You do NOT need to simplify your answer and you can leave your answer in terms of \(x \) and \(y \) (and only in terms of \(x \) and \(y \), \(y' \) should not appear in your final answer).

\[
y'(2x) + y'(x^2) = 3y^2 y' \]

\[
\Rightarrow 2xy = (3y^2 - x^2) y' \Rightarrow y' = \frac{2xy}{3y^2 - x^2}
\]

\[
y'' = \frac{(2xy' + 2y)(3y^2 - x^2) - 2xy(6yy' - 2x)}{(3y^2 - x^2)^2}
\]

Answer 2.) \(y'' = \frac{(4x^2y + 2y)(3y^2 - x^2) - 2xy \left(\frac{12xy^2}{3y^2 - x^2} - 2x \right)}{(3y^2 - x^2)^2} \)
[14] 3.) Calculate the following limit. Show all steps.

\[\lim_{x \to 0^+} x \ln(x) = \frac{0}{0} \]

\[= \lim_{x \to 0^+} \ln(x) + \frac{x}{x-1} \]

\[= \ln((x)^{-1}) \]

\[= \frac{-1}{x-1} \ln(x) \]

\[= \frac{-1}{x-1} \cdot \ln(x) \]

\[= \frac{\ln(x)}{x-1} \]

\[= \lim_{x \to 0^+} (-1) = 0 \]

[5] 4a.) State the Mean Value Theorem

If \(f \) is continuous on \([a, b]\) and \(f \) is differentiable on \((a, b)\), then there exists \(c \in (a, b) \) such that

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

[4b.) Use the Mean Value Theorem (or Rolle's theorem) to show \(f(x) = \ln(x) + x \) is one-to-one [Hint: recall \(f \) is one-to-one if \(f(a) = f(b) \) implies \(a = b \). Assume \(f(a) = f(b) \) and show \(a = b \) WHEN \(a \) and \(b \) are in the domain of \(f \).

Suppose \(f(a) = f(b) \) and \(a, b \) are in the domain of \(f = (0, \infty) \).

Suppose \(a < b \)

Note \(f \) is cont on \([a, b]\) \& diff on \((a, b)\)

Hence by the MVT there exists \(c \in (a, b) \) such that

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

\[f(x) = \ln(x) + x \Rightarrow f'(x) = \frac{1}{x} + 1 \Rightarrow f'(c) = \frac{1}{c} + 1 \]

But \(c \in (0, \infty) \Rightarrow f'(c) = \frac{1}{c} + 1 > 0 \), contradicting \(f'(c) = 0 \)
5. Two people start at the same point, say the origin. Person A walks east at a constant rate of 1 m/s. Person B walks northeast (45 degrees north of east) at 2 m/s. What is the rate of change in the distance between person A and person B after 20 seconds [law of cosines: \(a^2 = b^2 + c^2 - 2bc \cos(\alpha) \)]

\[
\begin{align*}
C^2 &= A^2 + B^2 - 2AB \cos 45^\circ \\
\dot{C} &= \dot{AA'} + \dot{BB'} + \dot{C}\cos 45^\circ (AB' + A'B) \\
C' &= AA' + BB' + \cos 45^\circ (AB' + A'B) \\
C' &= \frac{(20)(1) + (40)(2) + \cos 45^\circ [(20)(2) + (1)(40)]}{\sqrt{2000 + 800\sqrt{2}}} \\
C &= \sqrt{2000 + 800\sqrt{2}}
\end{align*}
\]

Answer 5.

6. A box with a square base and open top must have volume of 1000 cm³. Find the dimensions of the box that minimizes the amount of material used.

\[
V = 1000 = x^2 y \quad \Rightarrow \quad y = \frac{1000}{x^2}
\]

\[
A = x^2 + 4xy = x^2 + 4x \left(\frac{1000}{x^2} \right) = \frac{4000}{x}
\]

\[
A'(x) = 2x - \frac{4000}{x^2} = 2x^3 - 4000
\]

\[
A'(x) = 0 \quad \Rightarrow \quad 2x^3 - 4000 = 0 \quad \Rightarrow \quad 2x^3 = 4000 \quad \Rightarrow \quad x = \sqrt[3]{2000}
\]

Answer 6.)\[\sqrt[3]{2000} \text{ cm} \times \sqrt[3]{2000} \text{ cm} \times \frac{1000}{(2000)^{1/3}} \text{ cm}\]
6.) Find the following for \(f(x) = \frac{4-x^2}{x^2-9} = \frac{(2-x)(2+x)}{(x-3)(x+3)} \) (if they exist; if they don’t exist, state so). Use this information to graph \(f \).

Note \(f'(x) = \frac{-10x}{(x^2-9)^2} \) and \(f''(x) = \frac{-30(x^2+3)}{(x^2-9)^3} \)

[1.5] 6a.) critical numbers: \(0 \)

[1.5] 6b.) local maximum(s) occur at \(x = \) **none**

[1.5] 6c.) local minimum(s) occur at \(x = \) **0**

[1.5] 6d.) The global maximum of \(f \) on the interval \([0, 3]\) is **none** and occurs at \(x = \) __________

[1.5] 6e.) The global minimum of \(f \) on the interval \([0, 3]\) is **\(-\frac{4}{9}\)** and occurs at \(x = \)_**0**_

[1.5] 6f.) Inflection point(s) occur at \(x = \) **none**

[1.5] 6g.) \(f \) increasing on the intervals \((0, 3) \cup (3, \infty) \)

[1.5] 6h.) \(f \) decreasing on the intervals \((-\infty, -3) \cup (-3, 0) \)

[1.5] 6i.) \(f \) is concave up on the intervals \((-3, 3) \)

[1.5] 6j.) \(f \) is concave down on the intervals \((-\infty, -3) \cup (3, \infty) \)

[1.5] 6k.) Equation(s) of vertical asymptote(s) \(x = 3, \ x = -3 \)

[4] 6l.) Equation(s) of horizontal and/or slant asymptote(s) \(y = -1 \)

[4.5] 6m.) Graph \(f \)

\[
\lim_{x \to \pm \infty} \frac{4-x^2}{x^2-9} = \lim_{x \to \pm \infty} \frac{-2x}{2x} = \lim_{x \to \pm \infty} (\frac{1}{2}) = -1
\]

\[
\frac{x^2}{16-9} = \frac{-12}{7}
\]