\input epsf \input graphicx \magnification 1300 \vsize 10truein \nopagenumbers \parskip 10pt \parindent 0 pt Exam 1 Oct. 6, 2005 \hfil SHOW ALL WORK \hfil \vskip -10pt Math 25 Calculus I \hfil Either circle your answers or place on answer line. \hfil [15] 1.) Calculate the following limit: $lim_{x \rightarrow +\infty} {\sqrt{4x^2 + 9x + 8} \over 5x + 4}$ \vskip 15pt $lim_{x \rightarrow +\infty} {\sqrt{4x^2 + 9x + 8} \over 5x + 4} \cdot {{1 \over \sqrt{x^2}} \over {1 \over \sqrt{x^2}}}$ $= lim_{x \rightarrow +\infty} {\sqrt{4x^2 + 9x + 8} \over 5x + 4} \cdot {{1 \over \sqrt{x^2}} \over {1 \over |x|}}$ $= lim_{x \rightarrow +\infty} {\sqrt{4x^2 + 9x + 8} \over 5x + 4} \cdot {{1 \over \sqrt{x^2}} \over {1 \over x}}$, since $x \rightarrow +\infty$, we can assume $x$ is positive. \rightline{What if $x \rightarrow -\infty$?} $ = lim_{x \rightarrow +\infty} {\sqrt{4 + {9 \over x} + {8 \over x^2}} \over 5 + {4 \over x}}$ $ = {\sqrt{4} \over 5}$ $ = {2 \over 5}$ Alternate method: Factor out highest power in denominator: $lim_{x \rightarrow +\infty} {\sqrt{4x^2 + 9x + 8} \over 5x + 4}$ $= lim_{x \rightarrow +\infty} {\sqrt{x^2(4 + {9 \over x} + {8 \over x^2})} \over x(5 + {4 \over x})}$ $= lim_{x \rightarrow +\infty} {\sqrt{x^2}\sqrt{4 + {9 \over x} + {8 \over x^2}} \over x(5 + {4 \over x})}$ $= lim_{x \rightarrow +\infty} {|x|\sqrt{4 + {9 \over x} + {8 \over x^2}} \over x(5 + {4 \over x})}$ $= lim_{x \rightarrow +\infty} {x\sqrt{4 + {9 \over x} + {8 \over x^2}} \over x(5 + {4 \over x})}$, since $x \rightarrow +\infty$, we can assume $x$ is positive. \rightline{What if $x \rightarrow -\infty$?} $ = lim_{x \rightarrow +\infty} {\sqrt{4 + {9 \over x} + {8 \over x^2}} \over 5 + {4 \over x}}$ $ = {\sqrt{4} \over 5}$ $ = {2 \over 5}$ \vskip 5pt \centerline{Answer 1.) $\underline{~~ = {2 \over 5}~~}$} \vskip 5pt [15] 2.) Find the derivative of $f(x) = \sqrt{x}$ by using the definition of derivative. $f'(x) = lim_{h \rightarrow 0}{f(x + h) - f(x) \over h} = lim_{h \rightarrow 0}{\sqrt{x + h} - \sqrt{x} \over h}$ $= lim_{h \rightarrow 0}{\sqrt{x + h} - \sqrt{x} \over h} \cdot {\sqrt{x + h} + \sqrt{x} \over \sqrt{x + h} + \sqrt{x}}$ $= lim_{h \rightarrow 0}{x + h - x \over h(\sqrt{x + h} + \sqrt{x})}$ $= lim_{h \rightarrow 0}{h \over h(\sqrt{x + h} + \sqrt{x})}$ $= lim_{h \rightarrow 0}{1 \over (\sqrt{x + h} + \sqrt{x})}$ $= {1 \over (\sqrt{x} + \sqrt{x})}$ $= {1 \over 2\sqrt{x}} = {1 \over 2}x^{-1 \over 2}$ IF $x > 0$. Extra credit if you noticed that $x$ must be $> 0$. \vfill \centerline{Answer 2.) $\underline{~~{1 \over 2}x^{-1 \over 2}, ~x > 0}~~$} \eject Find the following derivatives \vskip 10pt [15]~ 3.) ${d \over dx}[{e^x(x^2 - x + 3) \over cos(2x)}]$ ${[e^x(x^2 - x + 3)]'cos(2x) - e^x(x^2 - x + 3)[cos(2x)]' \over cos^2(2x)}$ $= {[(e^x)'(x^2 - x + 3) + e^x(x^2 - x + 3)' ]cos(2x) - e^x(x^2 - x + 3)[-sin(2x)](2x)' \over cos^2(2x)}$ $= {[(e^x)(x^2 - x + 3) + e^x(2x - 1) ]cos(2x) - e^x(x^2 - x + 3)[-sin(2x)](2) \over cos^2(2x)}$ $= {(e^x)(x^2 + x + 2)cos(2x) + 2e^x(x^2 - x + 3)sin(2x) \over cos^2(2x)}$ Note it is better if you don't show all the intermediate steps. \vskip 10pt \centerline{Answer 3.) $\underline{~~{(e^x)(x^2 + x + 2)cos(2x) + 2e^x(x^2 - x + 3)sin(2x) \over cos^2(2x)}~~}$} \vskip 10pt [15]~ 4.) ${d \over dx}[2sin(e^{x^3} + 4)]$ $2[sin(e^{x^3} + 4)]' = 2cos(e^{x^3} + 4)[e^{x^3} + 4]' $ $= 2[cos(e^{x^3} + 4)][e^{x^3}(x^3)' + 0]$ $= 2[cos(e^{x^3} + 4)][e^{x^3}(3x^2)]$ $= 6x^2e^{x^3}cos(e^{x^3} + 4)$ Note it is better if you don't show all the intermediate steps. \vskip 10pt \centerline{Answer 4.) $\underline{~~6x^2e^{x^3}cos(e^{x^3} + 4)~~}$} \eject 5.) Answer the following questions based on the graph of $f$ given below. \centerline{\includegraphics[width=36ex]{graph25a}} %%\centerline{\epsfbox{graph25a.eps}} [2] 5a.) domain of $f = \underline{~~{R}~~}$ \hfil [2] 5b.) range of $f = \underline{~~(-\infty, 5]~~}$ \vskip 15pt [1] 5c.) Is $f$ one-to-one? $\underline{~~No~~}$ \hfil [2] 5d.) Does $f^{-1}$ exist? $\underline{~~No~~}$ \vskip 15pt [1] 5e.) $f(1) = \underline{~~2~~}$ \hfil [2] 5g.) $f\hskip 1pt'(-1) = \underline{~~0~~}$ \vskip 15pt [2] 5f.) Solve $f(x) = 1: \underline{~~-4, 4~~}$ \vskip 15pt [2] 5i.) $lim_{x \rightarrow +\infty} f(x) = \underline{~~4~~}$ \hfil [2] 5j.) $lim_{x \rightarrow -\infty} f(x) = \underline{~~-\infty~~}$ \vskip 15pt [2] 5k.) $lim_{x \rightarrow 3^+} f(x) = \underline{~~-\infty~~}$ \hfil [2] 5l.) $lim_{x \rightarrow 3^-} f(x) = \underline{~~5~~}$ \vskip 15pt [2] 5m.) State all points where $f$ is not continuous: $\underline{~~ x = 3 (or (3, 5))~~}$ \vskip 15pt [2] 5n.) State all points where $f$ is not differentiable: $\underline{ ~~x = 3, -3, 1, (or (3, 5), (-3, 2), (1, 2)) ~~}$ Note there is a corner at $x = -3$. The transition where $f$ is not constant for $x < -3$ to where $f$ is constant between -3 and 1 is not a smooth transition. However, if you thought it was a smooth transition due to my lack of drawing skills, you will not be docked if you missed this point. %%\centerline{\epsfbox{graph25.eps,width=6truein}} \includegraphics[width=83ex]{graph25AA} \end 6.) Given the graph of $y = f(x)$ below, draw the following graphs: [4] 6a) y = \hfil \end Review Problems Ch 3 p.270-274 Concept check: 1, 3 TF Quiz: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13 Exercises: 1 - 14, 17, 19, 21-24, 26, 30, 32, 35, 37, 39, 41, 42, 44, 55-57, 59, 61, 63, 67, 68, 84, [85-87 (but ignore acceleration)], 88, 100, 101, 102 Ch 2 p. 176 - 179 Concept check: 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14 TF Quiz: All Exercises: [1, 2], 3-12, [13], 14, [15-21], 25, 26, [31, 32], [35], 37, [39], 40, 41ab, [44-46], [47ab], 49 Ch 1: Concept check: 1, 3, 4, 6, 7, 8, 9, 11, 12, 13 Exercises: 1, 2, 5-8, 10, 19, 24, 25, 26 Tuesday Quiz: Proof + 3.6 Prove $(f + g)' = f' + g' $ $(cf)' = c(f')$ $f$ differentiable implies $f$ continuous: Show $lim_{x \rightarrow a} f(x) = f(a)$ Show $lim_{x \rightarrow a} [f(x) - f(a)] = 0$ $f$ differentiable at $a$ implies $f'(a)$ exists and $lim_{x \rightarrow a} {f(x) - f(a) \over x - a} = f'(a)$ Hence $lim_{x \rightarrow a} [f(x) - f(a)] = lim_{x \rightarrow a} {f(x) - f(a) \over x - a} (x-a) = lim_{x \rightarrow a} f'(a) (x - a) f'(a) lim_{x \rightarrow a} (x - a) = f'(a) (0) = 0$. $lim_{x \rightarrow a} f(x) = lim_{x \rightarrow a} [f(x) - f(a) + f(a)] = lim_{x \rightarrow a} [f(x) - f(a)] + lim_{x \rightarrow a} f(a) = 0 + f(a)$ \end